首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

离线环境的中文语音识别 paddlepaddle 与 Speech_Recognition(Sphinx)实践

toolkit 参考文献 简介 本文主要针对中文语音识别问题,选用常用的模型进行 离线 demo 搭建及实践说明。...语音识别基础 语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的技术。...语音识别本质上是一种模式识别的过程,未知语音的模式与已知语音的参考模式逐一进行比较,最佳匹配的参考模式被作为识别结果。 语音识别的目的就是让机器赋予人的听觉特性,听懂人说什么,并作出相应的动作。...目前大多数语音识别技术是基于统计模式的,从语音产生机理来看,语音识别可以分为语音层和语言层两部分。...先说结论:效果太差 先用了一段 ,中文普通话,用英文识别测试一下,居然不报错。

8.5K10

谷歌公司开发出高速、离线语音识别技术

据科技资讯网站zdnet(www.zdnet.com)报道,谷歌开发出了可在未联网的Nexus 5智能手机上实时运行的语音识别系统。...该系统无需通过远程数据中心进行运算,所以在没有可靠网络的情况下亦可通过智能手机、智能手表或其他内存有限的电子设备使用语音识别功能。...谷歌的科研人员表示,研发该系统的目的是创建在本地运行的轻量级、嵌入式、准确度高的语音识别系统。...为降低系统要求,研究人员为听写和语音命令这两个截然不同的语音识别领域开发了同一个模式。他们使用多种技术,将声学模型压缩为原版的十分之一大小。...这样的命令,离线内嵌式语音识别系统就可以即刻转录并于之后在后台执行。但准确的转录需要结合个人信息才能实现,例如联系人的姓名。研究人员表示,在模型中集成设备联系人列表即可解决这一问题。

1.9K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    依图做语音了!识别精度创中文语音识别新高点

    依图语音识别算法在全球最大开源中文数据库AISHELL-2上词错率仅3.71%,比原业内领先者提升约20%,大幅刷新现有纪录。比对各家语音识别算法,当今智能语音战场,英雄唯讯飞与依图尔?...“作为语音行业的‘新生’,我们还是有很多向‘老生’学习的地方,但我们立志推动行业创新与发展,做世界最好的中文普通话语音识别技术。”...智能语音竞争还未开始,依图要做世界最好的中文语音识别 万物互联,语音为先。 语音识别是AI理解世界最重要的组成部分,也是AI能听会说善理解的必要条件。...此次依图科技在语音识别技术方面的突破,不仅意味着依图首次涉足语音识别领域便已经跻身中文语音识别第一阵营,同时也说明语音识别在技术层面还有足够的进化空间,远远没有达到“超越人类”。...一般认为,中文语音识别的字错率低于3%时不会影响可读性,而超过15%则毫无可读性。这是语音识别的两条红线,在不同场景下,不同算法的表现可能会有很大差异。

    1.7K30

    Windows 使用 pocketsphinx 做中文语音识别

    https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/ 其中 Mandarin 为中文普通话...16k_ptm256_8000.tar.bz2 (需要解压) 语言模型:zh_broadcastnews_64000_utf8.DMP 拼音字典:zh_broadcastnews_utf8.dic 测试中文语音识别...首先准备一个中文音频文件(要求:.wav 格式,采样频率 16000HZ,单声道) 将下载的中文模型文件和解压后的 pocketsphinx 目录放到同一个目录下,这里假定就叫“中文语音识别”。...进入“中文语音识别”目录,然后运行下面的命令 pocketsphinx\bin\Release\x64\pocketsphinx_continuous.exe -hmm zh_broadcastnews_ptm256...dict zh_broadcastnews_utf8.dic -infile myfile-16000.wav > myfile.txt 运行完毕后,查看 myfile.txt 文件,内容即是程序识别出来的中文

    5.6K31

    PPASR中文语音识别(入门级)

    PPASR语音识别(入门级) 本项目将分三个阶段分支,分别是入门级、进阶级和应用级分支,当前为入门级,随着级别的提升,识别准确率也随之提升,也更适合实际项目使用,敬请关注!...PPASR基于PaddlePaddle2实现的端到端自动语音识别,本项目最大的特点简单,在保证准确率不低的情况下,项目尽量做得浅显易懂,能够让每个想入门语音识别的开发者都能够轻松上手。...在传统的语音识别的模型中,我们对语音模型进行训练之前,往往都要将文本与语音进行严格的对齐操作。...在传统的语音识别的模型中,我们对语音模型进行训练之前,往往都要将文本与语音进行严格的对齐操作,这种对齐非常浪费时间,而且对齐之后,模型预测出的label只是局部分类的结果,而无法给出整个序列的输出结果,...每一行数据包含该语音文件的相对路径和该语音文件对应的中文文本,要注意的是该中文文本只能包含纯中文,不能包含标点符号、阿拉伯数字以及英文字母。

    2.4K20

    Linux 使用 pocketsphinx 做中文语音识别

    前一篇博客说了一下怎么在 Windows 平台使用 pocketsphinx 做中文语音识别,今天看看在 Linux 上怎办实现。...模型文件下载地址 https://sourceforge.net/projects/cmusphinx/files/Acoustic and Language Models/ 其中 Mandarin 为中文普通话...16k_ptm256_8000.tar.bz2 (需要解压) 语言模型:zh_broadcastnews_64000_utf8.DMP 拼音字典:zh_broadcastnews_utf8.dic 测试中文语音识别...首先准备一个中文音频文件(要求:.wav 格式,采样频率 16000HZ,单声道) 将下载的中文模型文件和解压后的 pocketsphinx 目录放到同一个目录下,这里假定就叫 “test”。...-dict zh_broadcastnews_utf8.dic -infile myfile-16000.wav > myfile.txt 运行完毕后,查看 myfile.txt 文件,内容即是程序识别出来的中文

    5.1K30

    基于Pytorch实现的MASR中文语音识别

    Doi技术团队 链接地址:https://blog.doiduoyi.com/authors/1584446358138 初心:记录优秀的Doi技术团队学习经历 本文链接:基于Pytorch实现的MASR中文语音识别...MASR是一个基于端到端的深度神经网络的中文普通话语音识别项目,本项目是基于masr 进行开发的。...在data目录下是公开数据集的下载和制作训练数据列表和字典的,本项目提供了下载公开的中文普通话语音数据集,分别是Aishell,Free ST-Chinese-Mandarin-Corpus,THCHS...每一行数据包含该语音文件的相对路径和该语音文件对应的中文文本,要注意的是该中文文本只能包含纯中文,不能包含标点符号、阿拉伯数字以及英文字母。 生成训练的数据列表和数据字典。...infer_path.py的参数wav_path为语音识别的的音频路径。 infer_record.py的参数record_time为录音时间。

    4K86

    基于Pytorch实现的MASR中文语音识别

    MASR是一个基于端到端的深度神经网络的中文普通话语音识别项目,本项目是基于masr 进行开发的。...模型原理MASR使用的是门控卷积神经网络(Gated Convolutional Network),网络结构类似于Facebook在2016年提出的Wav2letter,只使用卷积神经网络(CNN)实现的语音识别...data目录下是公开数据集的下载和制作训练数据列表和字典的,本项目提供了下载公开的中文普通话语音数据集,分别是Aishell,Free ST-Chinese-Mandarin-Corpus,THCHS-...每一行数据包含该语音文件的相对路径和该语音文件对应的中文文本,要注意的是该中文文本只能包含纯中文,不能包含标点符号、阿拉伯数字以及英文字母。...infer_path.py的参数wav_path为语音识别的的音频路径。infer_record.py的参数record_time为录音时间。

    3.4K30

    基于Kersa实现的中文语音声纹识别

    源码地址:VoiceprintRecognition-Keras使用环境:Python 3.7Tensorflow 2.3.0模型下载数据集类别数量下载地址中文语音语料数据集3242点击下载更大数据集6235...创建数据本教程笔者使用的是中文语音语料数据集 ,这个数据集一共有3242个人的语音数据,有1130000+条语音数据。...在create_data.py写下以下代码,因为中文语音语料数据集 这个数据集是mp3格式的,作者发现这种格式读取速度很慢,所以笔者把全部的mp3格式的音频转换为wav格式,在创建数据列表之后,可能有些数据的是错误的...首先必须要加载语音库中的语音语音库文件夹为audio_db,然后用户回车后录音3秒钟,然后程序会自动录音,并使用录音到的音频进行声纹识别,去匹配语音库中的语音,获取用户的信息。...通过这样方式,读者也可以修改成通过服务请求的方式完成声纹识别,例如提供一个API供APP调用,用户在APP上通过声纹登录时,把录音到的语音发送到后端完成声纹识别,再把结果返回给APP,前提是用户已经使用语音注册

    2.7K20

    TextGrabber重大更新,识别文字并实时离线翻译,支持中文

    重要的是,它可以离线工作。 ABBYY的识别技术可以在任何颜色的背景下翻译文字。与其他类似的应用程序不同,它不要求用户下载语言以进行离线翻译。...改进后的TextGrabber捕捉文本中的61种语言,并实时将其在线转换为104种语言,如果是离线,则为10种语言。它基于2017年11月发布的ABBYY技术。...离线翻译适用于10种常用语言,包括英语,西班牙语,法语,德语,中文和日语。 ABBYY还宣布iOS的TextGrabber现在可以免费下载。...“ 该应用程序可以识别电子书,杂志,手册,屏幕,菜单,海报和路牌。文本识别完全在设备上执行。捕获的文本可以通过VoiceOver进行复制,编辑,共享,翻译或朗读。...例如,未来,您可能能够扫描合同并立即识别潜在风险和疑点,或将血液检测结果上传到医疗系统。” 从今日起, ABBYY的TextGrabber新版本可用于iOS设备。

    1.8K40

    高通研究新进展,设备离线语音识别率高达95%

    在波士顿的Re-Work深度学习峰会上,高通公司的人工智能研究员Chris Lott介绍了他的团队在新的语音识别程序方面的工作。...Lott说,平均来说,识别单词和短语的概率高达95%。 “它从使用设备的模式中学习,”他说。“它可以个性化行为。” Lott解释说,目前大多数语音识别系统都在云中处理语音识别。...2016年,Google 创建了离线语音识别系统,该系统比当时的在线系统快7倍。该模型经过约2000小时的语音数据训练,尺寸为20.3兆字节,在智能手机上的准确率达到86.5%。...当然,设备离线语音识别有其自身的一些限制。设计为脱机工作的算法无法连接到互联网来搜索问题的答案,并且错过在基于云的系统中通过更大且更多不同数据集进行改进。 但Lott认为高通的解决方案是前进的方向。...“云固然很强大,但我们认为语音识别应该直接在设备上实现。”

    1.1K40

    亚马逊机器学习团队开发可离线工作的复杂语音识别模型

    它们在云中执行大部分语音识别,他们的自然语言模型利用功能强大的服务器,具有几乎无限的处理能力。它在很大程度上是可以接受的。通常,处理在几毫秒内完成,但对于没有互联网连接的用户来说是一个明显的问题。...幸运的是,亚马逊的Alexa机器学习团队最近在将语音识别模型脱机方面取得了进展。他们开发了导航,温度控制和音乐播放算法,可以在设备上离线执行。...扩展Alexa功能的第三方应用程序是按需加载的,将它们存储在内存中会显着增加语音识别的延迟。...最后,该团队表示,与在线语音识别模型相比,量化和散列函数使内存使用量减少了14倍。令人印象深刻的是,它并没有影响准确性,离线算法“基本上与基线模型一样好”,误差增加不到1%。...我们的目标是减少内存占用,以支持本地语音助理,并减少云中自然语言处理模型的延迟。” 论文:arxiv.org/pdf/1807.07520.pdf

    56720

    语音识别内容

    PAAS层 语音识别的技术原理 产品功能 采样率 语种 行业 自服务 效果自调优 VAD静音检测 录音文件识别,一句话识别,在ASR服务端处理。 VAD是减小系统功耗的,实时音频流。...接口要求 集成实时语音识别 API 时,需按照以下要求。...内容 说明 支持语言 中文普通话、英文、粤语、韩语 支持行业 通用、金融 音频属性 采样率:16000Hz或8000Hz、采样精度:16bits、声道:单声道 音频格式 wav、pcm、opus、speex...统一采用 JSON 格式 开发语言 任意,只要可以向腾讯云服务发起 HTTP 请求的均可 请求频率限制 50次/秒 音频属性 这里添加声道这个参数: ChannelNum 是 Integer 语音声道数...Q2:实时语音识别的分片是200毫秒吗? A2:IOS的SDK. 200ms对应的 3.

    6.7K40

    python语音识别

    语音识别技术,也被称为自动语音识别,目标是以电脑自动将人类的语音内容转换为相应的文字。应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。...我写的是语音识别,默认就已经开通了语音识别语音合成。 这就够了,所以接口选择,不用再选了。 语音包名,选择不需要。...接下来,需要进行语音识别,看文档 点击左边的百度语言->语音识别->Python SDK ? 支持的语言格式有3种。分别是pcm,wav,amr 建议使用pcm,因为它比较好实现。...看参数,主要用到的是rate和1536 上图的16000表示采样率 1536表示能识别中文和英文,它的容错率比较高 1537必须是标准的普通话,带点地方口音是不行的。 所以建议使用1536 ?...(text, 'zh', 1, {         'spd':5,         'vol': 5,         'pit':5,         'per':0     })     # 识别正确返回语音二进制

    17.4K75

    语音识别模型

    简介Whisper 是 OpenAI 的一项语音处理项目,旨在实现语音识别、翻译和生成任务。...作为基于深度学习的语音识别模型,Whisper 具有高度的智能化和准确性,能够有效地转换语音输入为文本,并在多种语言之间进行翻译。...这种综合运用数据和先进技术的方式,使得 Whisper 提高了其在各种环境下的健壮性和准确性,能够实现更为精确、智能的语音识别和翻译,为用户提供更加出色的语音处理体验。...多任务Whisper 并不仅仅是预测给定音频的单词,虽然这是是语音识别的核心,但它还包含许多其他附加的功能组件,例如语言活动检测、说话人二值化和逆文本正态化。...包括以下几种:语音识别语音翻译口语识别语音活动检测这些任务的输出由模型预测的令牌序列表示,使得单个模型可以代替传统的语音处理管道中的多个组件,如下所示:应用安装openai-whisperopenai-whisper

    7110

    实战:基于tensorflow 的中文语音识别模型 | CSDN博文精选

    作者 | Pelhans 来源 | CSDN博客 目前网上关于tensorflow 的中文语音识别实现较少,而且结构功能较为简单。...网上看了一圈,发现基于tensorflow的中文语音识别开源项目很少,而且功能较为简单。英语的项目倒是很多,但奈何写代码的人功力太深厚,想转成中文的很麻烦。...(实际上是代码功力太差…), 语料采用Aishell 的170h语音....二、特征处理 2.1 MFCC MFCC 也就是梅尔倒谱系数,在理论上它的获取流程为: 先对语音进行预加重、分帧和加窗;(加强语音信号性能(信噪比,处理精度等)的一些预处理) 对每一个短时分析窗,通过FFT...5.2 带语言模型的解码 在训练声学模型阶段使用的是5.1的解码方式,在实际使用过程中需要添加语言模型来提升识别的准确率。

    5.3K10

    什么是语音识别语音助手?

    前言 语音助手已经成为现代生活中不可或缺的一部分。人们可以通过语音助手进行各种操作,如查询天气、播放音乐、发送短信等。语音助手的核心技术是语音识别。本文将详细介绍语音识别语音助手。...图片 语音识别的基本原理 语音识别是将语音信号转换为文本的技术。语音识别的基本原理是将语音信号分解为一系列短时频谱,然后对每个时刻的频谱进行特征提取和分类。...语音识别的主要步骤包括预处理、特征提取、模型训练和解码等。 预处理 预处理是指对语音信号进行必要的处理,以便更好地进行语音识别。预处理包括去除噪声、标准化音频质量、分段等操作。...语音助手的基本功能 语音助手的基本功能包括语音识别语音合成、自然语言处理和对话管理等。 语音识别 语音识别语音助手的核心功能,它可以将用户的语音输入转换为文本。...语音识别的精度直接影响语音助手的使用体验。 语音合成 语音合成是指将文本转换为语音信号的技术。语音合成可以使语音助手更加自然,更具人性化。

    3.8K00
    领券