首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【3519DV500】AI算法承载硬件平台_2.5T算力+AI ISP图像处理_超感光视频硬件方案开发

Hi3519DV500集成了高效的神经网络推理引擎,最高2.5Tops NN算力,支持业界主流的神经网络框架。神经网络支持完整的 API 和工具链,易于客户开发,升级 IVE 算子,支持特征点检测、周界、光流及多种计算机形态学算子;升级 DPU 算法实现双目深度图加速单元,最大分辨率 2048 x 2048,最大视差 224,处理性能 720p@30fps。 Hi3519DV500内置双核A55,提供高效、丰富和灵活的CPU资源,基于该款主控芯片开发的核心板可以满足用户计算和控制需求。 Hi3519DV500芯片搭载了高性能的ISP引擎和处理器,能够实时处理高清、超高清甚至4K级别的图像数据。它支持多种图像处理算法和技术,如自动白平衡、自动曝光、降噪、边缘增强等,可以实现图像的清晰度、色彩还原度和对比度的优化。

03

AI靠什么超越人类修图师?万字长文看懂「美图云修」AI修图解决方案

机器之心报道 机器之心编辑部 近日,美图推出了全新的人工智能修图解决方案——美图云修,本文将从技术角度深入解读该方案,目前用户也可通过美图 AI 开放平台进行体验。 商业摄影的工作流程中非常重要的一项是「后期修图」,它工作量大、周期长,同时,培养一名「下笔如有神」的修图师往往需要付出高昂的人力和物力成本,即便是熟练的修图师也需要 1-3 个月的时间熟悉和适应不同影楼的修图风格和手法。除此之外,修图师的专业水平不同,审美差异、工作状态好坏等因素都会造成修图质量波动。 针对以上痛点,基于美图成立 12 年来在

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一组照片渲染出3D视频,单像素点实时渲染火了,网友:在家也能制作3A游戏了?

    机器之心报道 编辑:杜伟、陈萍 合成视频达到了新的高度,来自德国埃尔朗根 - 纽伦堡大学的研究者提出了一种新的场景合成方法,使合成视频更接近现实。 合成逼真的虚拟环境是计算机图形学和计算机视觉中研究最多的主题之一,它们所面临是一个重要问题是 3D 形状应该如何编码和存储在内存中。用户通常在三角形网格、体素网格、隐函数和点云之间进行选择。每种表示法都有不同的优点和缺点。为了有效渲染不透明表面,通常会选择三角形网格,体素网格常用于体绘制,而隐函数可用于精确描述非线性分析表面,另一方面,点云具有易于使用的优点,因

    01

    Boltzmann机详解

    我们知道,Hopfield神经网络拥有联想记忆的能力,这也是对生物神经网络的一种模拟。但是,Hopfield神经网络也和BP神经网络一样,有一个致命的缺陷:只能找到局部最优解,而无法沿着梯度上升的方向在全局的角度寻求全局最优解。 为了解决这个问题,1983年,Kirkpatrick等提出了模拟退火算法(SA)能有效的解决局部最优解问题。‘退火’是物理学术语,指对物体加温在冷却的过程。模拟退火算法来源于晶体冷却的过程,如果固体不处于最低能量状态,给固体加热再冷却,随着温度缓慢下降,固体中的原子按照一定形状排列,形成高密度、低能量的有规则晶体,对应于算法中的全局最优解。模拟退火算法包含两个部分即Metropolis算法和退火过程。Metropolis算法就是如何在局部最优解的情况下让其跳出来,是退火的基础。1953年Metropolis提出重要性采样方法,即以概率来接受新状态,而不是使用完全确定的规则,称为Metropolis准则,计算量较低。

    02

    Bioinformatics|具有图和序列的神经网络的端到端学习的化合物与蛋白质相互作用预测

    这次给大家介绍Masashi Tsubaki教授的论文“Compound-protein Interaction Prediction with End-to-end Learning of Neural Networks for Graphs and Sequences”。关于化合物与蛋白质的相互作用 (Compound-Protein Interactions ,CPIs)预测的相关问题是当今药物研发的重要课题,能更高效准确的预测 CPI,对生物科研、化学实验和日常制药都会大有益处。Masashi Tsubaki教授现有模型处理不平衡数据集(即包含少量的正样本(即相互作用)和大量的负样本(即不相互作用)的数据集)的不良性能问题。基于此问题,Masashi Tsubaki教授将GNN(Graph Neural Network,图神经网络)和CNN(Convolutional Neural Network,卷积神经网络)引入 基础分类器模型并加入注意力机制调控,提出一种具有图和序列的端到端神经网络模型,通过端到端表示学习在平衡和不平衡数据集上实现更强大的性能,在某些方面了优化CPI的预测。

    02
    领券