矩阵链乘法问题是指给定一串矩阵序列M₁M2..Mn,求至少需要进行多少次乘法运算才能求得结果
动态规划可以被视为一种有限状态自动机,其中每个状态代表了问题的一个子集,状态之间的转移代表了子问题之间的关联。在有向无环图(Directed Acyclic Graph,简称DAG)中,每个节点代表一个状态,而边则代表了状态之间的转移关系。通过这种方式,动态规划将问题转化为在一个DAG上寻找最优路径的问题。
动态规划也用于优化问题。像分治法一样,动态规划通过组合子问题的解决方案来解决问题。而且,动态规划算法只解决一次每个子问题,然后将其答案保存在表格中,从而避免了每次重新计算答案的工作。
矩阵链乘法问题是一个经典的动态规划问题,其中给定一个矩阵链,我们需要确定一个乘法顺序,使得计算该链所需的总标量乘法次数最少。
首先,我们要明确矩阵链乘法问题的原始形式:给定一个矩阵链 ( A_1, A_2, \ldots, A_n ),我们要找到一种括号化方案,使得乘法运算的次数最少。这个问题确实具有最优子结构性质,并可以使用动态规划来解决。
矩阵乘法的Strassen 这个算法就是在矩阵乘法中采用分治法,能够有效的提高算法的效率。 先来看看咱们在高等代数中学的普通矩阵的乘法 两个矩阵相乘 上边这种普通求解方法的复杂度为: O(n3)
构造备忘录P[i,c],P[i,c]表示在前i个商品中选择,背包容量为c时的最优解
在Go语言中,为了找到矩阵链乘法的最优括号化方案,我们通常会使用动态规划(Dynamic Programming, DP)的方法。矩阵链乘法的问题是要确定计算矩阵乘积的最有效顺序,以最小化乘法操作的次数。
最近在刷算法题目,突然重新思考一下大二时学习的算法分析与设计课程,发现当时没有学习明白,只是记住了几个特定的几个题型;现在重新回归的时候,上升到了方法学上了;感觉到了温故知新的感觉;以下总结自童咏昕老师的算法设计与分析课程和韩军老师的算法分析与设计课程;当我们遇到一个问题的时候,我们先想出一个简单的方法,可以之后再在这个方法的基础上进行优化;
从格罗滕迪克那里,我学习到不要以证明过程的难度为荣:困难意味着我们尚未理解。也就是说我们要能绘制出让证明过程显而易见的图景。 ——著名数学家 Pierre Deligne
注意不要有不必要的输出,比如"请输入 a 和 b 的值: ",示例代码见隐藏部分。
最优子结构指的是一个问题的最优解可以由其子问题的最优解构造而成。换句话说,如果我们可以通过解决子问题来解决原问题,那么这个问题就具有最优子结构性质。
矩阵链乘问题是最典型的动态规划问题,本文介绍如何用动规算法解决这个问题,要理解下面的内容请先阅读这篇动态规划的总结。
写在前面:从本章开始,算法导论章节进入第四部分:高级设计和分析技术。在读的过程中,可以明显感觉到本章内容跟之前章节的内容要复杂得多。这么来说,之前章节的内容更多的是在教我们使用一些在算法设计过程中常用的工具(即数据结构),而本章以后的内容是在述说更上层的方法论(如何根据不同的问题精确地设计不同的算法)。这就好比建房子时,有了一切所需的工具之后,如何根据不同的地段或房主的要求,设计出切实可行的房子结构,这取决于建筑设计师的思想。因此,本章以后的内容在某种程度上更为复杂,尤其是动态规划这章。曾经听搞
@toc 动态规划 History does not occur again 算法总体思想 与分治算法类似 子问题往往不是互相独立的, (分治会重复计算) 保存已解决的子问题的答案,需要时找出即可(空间换时间) 基本步骤 找出最优解的性质并刻划其结构特征 递归地定义最优值 以自底向上的方式计算出最优值(递推) 根据计算最优值时得到的信息构造最优解 矩阵连乘问题 问题描述 给定n个矩阵{A1, A2,..., An}, 其中Ai</s
买票找零 假设有2N个人在排队买票,其中有N个人手持50元的钞票,另外有N个人手持100元的钞票,假设开始售票时,售票处没有零钱,问这2N个人有多少种排队方式,不至使售票处出现找不开钱的局面? 01 class 题目分析: 这题是典型的卡特兰数(Cartalan)问题 Cartalan数 令h(1)=1 h(n) = h(1)*h(n-1) + h(2)*h(n-2) + h(3)*h(n-3) + ....+h(n-1)*h(1) (其中n>=2) 该递归求解为h(n) = C(2n, n)/(n+1
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
给定一个非负整数序列,a1, a2, …, an,和一个目标值 S。现在你有两种符号 + 和 -。对于每个整数,你可以选择为其选择一个符号。找到有多少种添加符号的方式使其目标值等于 S。
剑指offer上有这么一道题目: 题目描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。(注意:这两个序列的长度是相等的) 示例1: 输入
Polygon Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5293 Accepted: 2238 Description Polygon is a game for one player that starts on a polygon with N vertices, like the one in Figure 1, where N=4. Each vertex is labelled with a
贪心算法(Greedy Algorithm)的基本思想是,在每一步中都选择局部最优的解,最终得到全局最优解。也就是说,贪心算法是在一定的约束条件下,逐步地构建问题的解,通过每一步选择局部最优的策略来达到全局最优的解。贪心算法的求解过程非常高效,但有时可能会得到次优解或者无解。因此,在应用贪心算法时,需要注意问题的约束条件和性质,以及选取合适的贪心策略。
感兴趣的话可以参考 算法竞赛、小白学DP(动态规划) 学习相关代码的具体实现(Java版)
10003 – Cutting Sticks 区间DP dp[l][r]代表分割l到r的最小费用
Python算法设计篇(8) Chapter 8 Tangled Dependencies and Memoization
如果能以 3D 方式展示矩阵乘法的执行过程,当年学习矩阵乘法时也就不会那么吃力了。
矩阵乘法(matmul),是机器学习中非常重要的运算,特别是在神经网络中扮演着关键角色。
正如在现实中一样,很多当前时刻的状态只取决于上一个时刻所做的决定而不是受所有历史所做出的的决定的影响,比如灯泡的以后发光的寿命只和当前是否发光有关、某一个时刻的销售额只与现在已知的累计销售额有关和过去任一时刻的累计销售额无关、人生以后的路只和当下的路有关而不是取决于过去等等,这种在概率学上成为无记忆性,一般指数分布是属于无记忆的概率分布,而马氏链属于无记忆的随机过程。
Pine 发自 凹非寺 量子位 | 公众号 QbitAI 真正零门槛!小白都能轻松看懂的Transformer教程来了。 在自然语言处理和计算机视觉领域,Transformer先后替代了RNN、CNN的地位成为首选模型,最近爆火的ChatGPT也都是基于这个模型。 换言之,想进入机器学习的领域,就必须得懂Transformer。 这不,量子位就发现了一篇零基础也能学的教程,作者是前微软、Facebook首席数据科学家,也是MIT机械工程的硕博士,从视觉化矩阵乘法开始,带你一步步入门。 DeepMind研究科
总篇链接:https://laoshifu.blog.csdn.net/article/details/134906408
二维矩阵是一个由行和列组成的数学对象,通常用一个大括号括起来的矩形阵列来表示。在二维矩阵中,每个元素都有一个特定的位置,由其所在的行和列确定。具体来说,如果我们有一个m行n列的矩阵A,那么它的元素可以表示为A(i,j),其中i表示行号,j表示列号,A(i,j)表示第i行第j列的元素。
RNN:循环神经网络 与CNN最大的不同是记忆暂存功能,可以把过去输入的内容所产生的远期影响量化后与当前时间输入内容一起反应到网络中参与训练。尤其是对时间序列、自然语言(上下文关系)的处理,具有优势。 马尔科夫链:在给定当前的知识或信息下,观测对象过去的历史状态对于将来的预测是无关的,只需要观测当前状态即可得出。 HMM:隐马尔可夫模型,隐马尔可夫链的模型相对简化,是贝叶斯信念的一个特例。 假如三个骰子,分别是正方体D6、四面体D4和八面体D8。 无序的扔这三个骰子,可能出现了一串序列,2,1,8。这就叫做
纠删码数据容错原理 纠删码是一种前向纠删码。过程分为编码和解码。编码过程是将文件分割为固定大小的文件块,针对这些被分割的文件块编码为k个块(k个块中包括了k1个数据块和k2个校验块)。解码过程是将编码后的多个子块作为输入,经过解码可以恢复任何一个块的数据(不管是数据块还是校验块)。 采用纠删码技术来做数据容错,当磁盘出现故障,失效数据可以通过纠删码的校验链的构建机制来恢复数据,而不是纠正数据自身的错误,一般(k+r,k)纠删码存储开校门为r/k,相对副本纠删码具有低存储开销,但是纠删码涉及到的编解码
AiTechYun 编辑:xiaoshan 马尔可夫链是一种相当常见的、相对简单的统计模型随机过程的方法。它们已经被应用于许多不同的领域,从文本生成到金融建模。一个常见的例子是r/SubredditS
python科学计算包的基础是numpy, 里面的array类型经常遇到. 一开始可能把这个array和python内建的列表(list)混淆, 这里简单总结一下列表(list), 多维数组(np.ndarray)和矩阵(np.matrix)的区别. NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(通常是元素是数字)。在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用pyth
如果说简单的理解这个算法,我们可以打一段输出来检测每一次处理的dp数组的具体数值。
前面的一系列文章跟大家分享了各种数据结构和算法的实现,本文将分享一些算法的设计技巧:分而治之、动态规划,使用这些技巧可以借算法来解决问题,提升自己解决问题的能力,欢迎各位感兴趣的开发者阅读本文。
同态加密(Homomorphic Encryption, HE)是指满足密文同态运算性质的加密算法,即数据经过同态加密之后,对密文进行特定的计算,得到的密文计算结果在进行对应的同态解密后的明文等同于对明文数据直接进行相同的计算,实现数据的“可算不可见”。同态加密的实现效果如图1所示。
同态加密是密码学领域自1978年以来的经典难题,也是实现数据隐私计算的关键技术,在云计算、区块链、隐私计算等领域均存在着广泛的应用需求和一些可行的应用方案。 本文首先介绍同态加密的基本概念、研究进展以及标准化进展,然后对主流的乘法/加法半同态加密算法和全同态加密算法及其工程实现情况进行概述,最后对同态加密在各领域的应用场景进行分析。 一、同态加密概述 1、基本概念 同态加密(Homomorphic Encryption, HE)是指满足密文同态运算性质的加密算法,即数据经过同态加密之后,对密文进行特定的计算
国外很多线性代数课程的第一课便是线性变换,这个概念比矩阵来的更早。物理学家们通常更关注这个概念本身,关注它们是怎么变换的。但是在我们的学习中为了更方便的计算,引入了坐标系及坐标轴,并且使每一个线性变换都对应一个矩阵,矩阵背后也同样是线性变换的概念。
之前我的笔记都是在OneNote上记录的,苦于OneNote羸弱的跨平台性,我决定抛弃OneNote,今后的笔记都用Markdown记录,方便迁移也方便调整格式。文章一开始编辑后会保存在我的Github仓库中(https://github.com/ZFhuang/Study-Notes),整理完后会发到公众号上,并延时同步到我的腾讯云。
需要说明的是,由于算法的代码实现主要注重思路的清晰,下方有代码实现的文章主要以Python为主,Java为辅,对于Python薄弱的同学敬请不用担心,几乎可以看作是伪代码,可读性比较好。如实在有困难可以自行搜索Java代码
ALS是alternating least squares的缩写 , 意为交替最小二乘法,而ALS-WR是alternating-least-squares with weighted-λ -regularization的缩写,意为加权正则化交替最小二乘法.
文章目录 矩阵乘法,星乘(*)和点乘(.dot)的区别 1.基本示例 2. 总结 python实现余弦相似度 java实现余弦相似度 矩阵乘法,星乘(*)和点乘(.dot)的区别 1.基本示例 import numpy a = numpy.array([[1,2], [3,4]]) b = numpy.array
选自TowardsDataScience 作者:Anuradha Wickramarachchi 机器之心编译 参与:Nurhachu Null 在机器学习中,绝大多数任务会涉及到耗费时间的大量运算,
这段时间我会把蓝桥杯官网上的所有非VIP题目都发布一遍,让大家方便去搜索,所有题目都会有几种语言的写法,帮助大家提供一个思路,当然,思路只是思路,千万别只看着答案就认为会了啊,这个方法基本上很难让你成长,成长是在思考的过程中找寻到自己的那个解题思路,并且首先肯定要依靠于题海战术来让自己的解题思维进行一定量的训练,如果没有这个量变到质变的过程你会发现对于相对需要思考的题目你解决的速度就会非常慢,这个思维过程甚至没有纸笔的绘制你根本无法在大脑中勾勒出来,所以我们前期学习的时候是学习别人的思路通过自己的方式转换思维变成自己的模式,说着听绕口,但是就是靠量来堆叠思维方式,刷题方案自主定义的话肯定就是从非常简单的开始,稍微对数据结构有一定的理解,暴力、二分法等等,一步步的成长,数据结构很多,一般也就几种啊,线性表、树、图、再就是其它了。顺序表与链表也就是线性表,当然栈,队列还有串都是属于线性表的,这个我就不在这里一一细分了,相对来说都要慢慢来一个个搞定的。蓝桥杯中对于大专来说相对是比较友好的,例如三分枚举、离散化,图,复杂数据结构还有统计都是不考的,我们找简单题刷个一两百,然后再进行中等题目的训练,当我们掌握深度搜索与广度搜索后再往动态规划上靠一靠,慢慢的就会掌握各种规律,有了规律就能大胆的长一些难度比较高的题目了,再次说明,刷题一定要循序渐进,千万别想着直接就能解决难题,那只是对自己进行劝退处理。加油,平常心,一步步前进。
在算法设计的学习中,每到“动态规划”一节,一般都会涉及到“矩阵连乘”问题(例如《Algorithms》,中文译名《算法概论》),可想而知该题的经典程度 :)
吴立德老师亲自讲解前馈神经网络和BP算法,让初学者对基础更加了解,对以后网络的改建和创新打下基础,值得好好学习!希望让很多关注的朋友学习更多的基础知识,打下牢固的基石,也非常感谢您们对我们计算机视觉战
随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。其中马尔科夫过程在预测模型上面的作用很大,校园图书馆管理人员根据当前学生们借阅图书的情况,需要用到马氏链来进行预测,股票行情的涨跌幅,状态分类。以及农业生态环境上面的改善,马氏链都做出了贡献。 本文主要从马尔可夫理论模型出发,通过分析小案例–赌徒何时才会收手,深入地了解离散时间序列的马尔可夫过程(马氏链)在我们生活当中的应用,在文章的核心部分,还会运用编程语言来实现预测一些有趣的模型,最后总结出马氏链的优缺点,帮助我们同学们更好的学习马氏链。
领取专属 10元无门槛券
手把手带您无忧上云