线性代数是一门有趣又有用的学科。基于机器学习、深度学习等技术的人工智能的核心数学知识就包含数理统计、微积分与线性代数。 通过 求导矩阵 对多项式求导: 例: 则声明其系数向量与次数矩阵。...将 D 与 y 做乘,则得到求导后的系数: 对应数学表达式: 同理,可推导 积分矩阵 : 因此,对于式 ,其积分矩阵为: 原式线性多项式最高次幂为1,则积分后最高次幂为2,则积分矩阵要表达 2 次的系数...则对于 ,积分矩阵为: 将 与 系数向量 做乘,则得到积分后的系数: 对应数学表达式: 注意该不定积分没有常数项。...启发:该方法很好理解,利用了矩阵的性质,实现了系数的自动变换与落位,在计算实现时可以考虑该方法减少迭代次数,提高运算效率。但是可能只适合线性多项式。...下面是一个 matlab 的例题,我先通过求导矩阵求其求导后,在通过积分矩阵求其原式,但是不带常数项。
曲线积分,顾名思义,就是沿着一条曲线进行的积分。与我们常见的定积分(在一段区间上积分)不同,曲线积分的积分路径是一条曲线。 在物理学中,很多问题都可以转化为曲线积分。...例如,计算一个力沿一条路径所做的功,计算一个向量场沿一条曲线的环量等等。曲线积分可以用来计算曲线的长度、曲面面积等几何量。 第一型曲线积分: 计算一根非均匀密度细杆的总质量。...格林公式: 对于闭合曲线上的第二型曲线积分,可以利用格林公式将其转化为二重积分。 格林公式告诉我们,在一定条件下,我们可以将一个闭合曲线的线积分转化为一个平面区域的二重积分。...格林公式将复杂的曲线积分转化为相对简单的二重积分。当曲线积分的计算比较困难时,通过格林公式,我们可以将积分区域转化为平面区域,从而简化计算过程。...特别的有当一个第二型曲线积分的值只与路径的起点和终点有关,而与路径的具体形状无关时,我们就说这个曲线积分与路径无关。
社区在线技术交流群 https://bbs.mlqi.org (大家多去逛逛哈) 今天给大家介绍一个实用的在线小工具,矩阵微积分在线生成 Python/Latex 代码。
联立解得 于是,两点高斯积分公式为 式(1)很好理解,就是一个矩形面积嘛。对于式(2),取一般的一次函数 ,如图c ? 式(2)右边的积分就是梯形的面积,就是所熟知的上底加下底乘高除以二。...还可以用梯形中位线表示 上式的意义是:一次函数的高斯积分需要一个高斯积分点即x=0的位置,确定的权重是2,积分点的函数值是f(0)。...对于式(3),取一般的二次函数 ,可以验证: 上式的意义是:二次函数的高斯积分需要两个高斯积分点 和 ,权重各为1,就可以计算积分了。...也就是说,n个高斯积分点可以计算2n-1次及以下的函数积分。 ? 高斯积分点是强制使这种数值积分结果与前2n-1阶多项式的积分相等解出来的。比如你打算使用n个点,你还有n个未知权重。...你就要使这种数值积分的结果等于对应的从0到2n-1的所有多项式项在区间内的积分结果。这样你就有一个2n阶的非线性方程组,解了它,就能获得积分点和权重值。
大家好,又见面了,我是你们的朋友全栈君。...曲线积分 曲面积分 第一类曲线积分和第二类曲线积分 第一类曲线积分 \(L\)为\(R^{3}\)中的可求导的长曲线,函数\(f(x,y,z)\)在\(L\)上有定义 习题: \(\int\limits..._{L}|x|^{\frac{1}{3}}ds\)(\(L\):星形线\(x^{\frac{2}{3}} +y^{\frac{2}{3}} = a^{\frac{2}{3}}\)) 第二类曲线积分 第一类曲面积分和第二类曲面积分...第一类曲面积分 设S为可求面积的曲面函数,\(f(x,y,z)\)在\(S\)上面有定义,将其分割为\(S_{1},S_{2},S_{3},\dots,S_{n}\) 在每个小块曲面上\(S_{j}...\)任取一点\(Q_{j}=(\xi_{j},\eta_{j},\zeta_{j})\) 第二类曲面积分 Green公式 \(\int_\limits{\alpha D}Pdx+Qdy=\iint_\limits
函数 ∫21xdx∫12xdx \int_1^2 {x} \,{d}x 代码 from sympy import * x = symbols('x') pri...
一元函数高斯积分的积分区域为[-1,1],二元函数的高斯积分区域为 ,也就是一个边长为2的正方形区域,称为标准区域。 ?...考虑二重积分 利用累次积分和一元函数的高斯积分公式可以得到: 或者 这就是二元函数的高斯积分公式。其中W表示积分点权重,n表示积分点数目。n随着被积函数阶次增加而增加。...实际应用中,积分区域大多是非标准区域。比如 ? 这时就需要将非标准区域映射到标准区域,即 x = x(ξ, η), y = y(ξ, η) 其中 是是xOy坐标系下四个顶点的坐标。...xOy坐标系下一个无限小矩形区域面积 ,而在坐标系 下的面积 可以得到 这里 是雅可比矩阵。 的证明见高数教材。...四个顶点的坐标分别为(0,0),(2,0),(2,3),(0,2) 雅可比矩阵 采用4个积分点的高斯积分 ? 注意这里的 是高斯积分点的坐标, 。接下来用Python编程可得到结果。
在区间 上,采用梯形公式计算 的定积分 如果将区间 二等分,采用梯形公式计算 的定积分 其中 如果将区间 三等分,采用梯形公式计算 的定积分 其中 由此可以得到递推式 表示两次迭代的相对误差...python代码 import math ###自适应梯形公式求积分 ### y = 1/( 1+x^2 ) def Func(x): return 1/( 1+pow(x,2) ) def..., 0.6, 1, eps = 1e-6) print(T) 计算结果是0.24497869339807107,精确值为: 算法基本原理:把原区间分为一系列小区间(n份),在每个小区间上都用小的梯形面积来近似代替原函数的积分...,当小区间足够小时,就可以得到原来积分的近似值,直到求得的积分结果满足要求的精度为止。...但是这个过程中有一个问题是步长的取值,步长太大精度难以保证,步长太小会导致计算量的增加。
设函数 f(x) 在区间 [a,b] 上可积,对任意的 x \in [a,b],做变上限积分 \Phi (x) = \int_{a}^{x}f(t)dt 这个积分称为函数 f(x) 的积分上限函数。...当 f(x) > 0\Phi (x) 在几何上表示为右侧邻边可以变动的曲边梯形的面积。...性质1:函数 \Phi (x) 在区间 [a,b] 上连续 直观上看,当 f(x) > 0\Phi (x) 代表的是图形在区间 [a,x] 上的面积,很明显,面积随 x 的变化是连续的。...由 1 可知: \Delta y = \int_{x}^{x + \Delta x}f(t)dt 再由定积分中值定理,得 \Delta y = \int_{x}^{x + \Delta x}f(t...rightarrow 0}\frac{f(\xi)\cdot \Delta x}{\Delta x} = \lim_{\Delta x\rightarrow 0}f(\xi) = f(x) 故:变上限积分函数是
在 数值积分| 辛普森公式 提到,辛普森积分最简单的形式是 也就是说至少要三个积分点,两个积分子区间。所以,自适应辛普森积分公式要从S1起步,即 ?...将 式与自适应梯形公式 比较,可得 由此可以得到递推式 若以 表示前后两次计算结果的相对误差,即 若满足要求,则停止计算。...计算结果是0.7853981628062056,精确值为 算法基本原理:把原区间分为一系列小区间(n份),在每个小区间上都用小的梯形面积来近似代替原函数的积分,当小区间足够小时,就可以得到原来积分的近似值...,直到求得的积分结果满足要求的精度为止。...但是这个过程中有一个问题是步长的取值,步长太大精度难以保证,步长太小会导致计算量的增加。
泰勒(Taylor)公式大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。ƒ(x)在x=a处的泰勒展开式为: ? 注意,等号右边是无穷多项。...展开多项式的函数图像与ƒ(x)=e^x对比 ? ƒ(x)=cosx在x=0处展开多项式的函数图像与ƒ(x)=cosx对比 ? 可以看到,展开多项式项数越多,得到的图像和原函数越接近。...[算例] 1.求积分 ? 要求误差小于0.001 展开得 ? x=1代入 ? ? 如果要求误差小于10^-6, 则保留前五项 ?...泰勒公式,应用于数学、物理领域,是一个用函数在某点的信息描述其附近取值的公式。...如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
注册 x ( T( B3 I- e% Q& H3 m trapz 是基于梯形法则的离散点积分函数。 调用形式:6 H* C! T A0 d I = trapz(x,y)g3 ]; x1 g( x!...w( K h+ R% R3 G6 ` 其中 x 和 y 分别是自变量和对应函数值,以 sin(x) 在 [0,pi] 积分为例: / p- s3 v8 y l( [x = linspace(0,pi,...4 U Q o” x2 r: P* Z1 T’ u- F或者在矩阵中寻找数的位置(也相当于是判断两数相等)。...V4 K5 m8 F7 G / V6 l5 z8 Y( j/ Q T& p( N生成一系列有规律名变量 – O6 P: o: A+ p4 _: a当循环迭代需要把每次迭代结果进行保存时,如果每次迭代的结果是尺寸不同的矩阵...元胞数组是 MATLAB 中的特色数据类型,它的元素可以是任意类型的变量,包括不同尺寸或不同维度的矩阵。 对于上面的例子,利用元胞数组: !
反常积分又叫广义积分,是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又称无界函数的反常积分)。 ?...简述 定积分的积分区间都是有限的,被积函数都是有界的。但在实际应用和理论研究中,还会遇到一些在无限区间上定义的函数或有限区间上的无界函数,对它们也需要考虑类似于定积分的问题。...因此,有必要对定积分的概念加以推广,使之能适用于上述两类函数。这种推广的积分,由于它异于通常的定积分,故称之为广义积分,也称之为反常积分。...如果放宽闭区间约束,即一个定积分的上限或者下限趋于无穷大,则称此积分为无穷区间上的广义积分。 如果放宽函数有界的约束,即被积函数无界,则称此积分为无界函数的广义积分,亦可称为瑕积分。...广义积分是从定积分基础上拓展出来,其几何意义与定积分几何意义一样,都是描述一块区域的面积,但是与定积分不同的是:广义积分描述的区域不是闭合区域,而是一个开放的、至少有一边是无界的区域。
\text { 并基于积分原理计算 } \int_{0}^{1} x^{3}+1 \text { 的值 } 1....并基于积分原理计算 ∫01x3+1 的值 def func(x): return x ** 3 + 1 down = 0 upper = 1 interval = np.linspace(...func(left) area = width * height result += area print(f"{result:.2f}") 结果如下: 取 50 个矩形计算数值积分的时候...\text { }可视化积分的动画过程 2....可视化积分的动画过程 导入需要的依赖库: import numpy as np import matplotlib.path as path import matplotlib.pyplot as plt
复杂的积分公式,理论描述该问题是如此的简单,过冷水往期也有和大家一起分享复杂函数的积分问题,本期过冷水会带大家一起做一下两幅图像的相互转换工作,重点讲一下积分计算中的小技巧。...根据其函数类型不同自然求积分的方法也就不同了。过冷水先来讲一讲如何利用 'smoothingspline'、'lnterpolant'进行积分和函数转换。...由图像可发现用'smoothingspline'、'lnterpolant'做拟合再用大数定理求积分基本上能够得到我们想要转换效果看上去转换函数和原始值有 误差是由实验数据的不完全匹配引起的,我们使用的方法是没有问题的...我们再用解析式的方式求积分我们用gauss8得到的两个解析式分别是: ?...用quad函数可以迅速提高运算效率,but quad函数也是不完美的,是在积分的时候有限制。感兴趣的可以摸索一下问题在什么地方。
利用分部积分以及二次积分求解一道积分问题 3.17 (江苏省2016竞赛题) 设函数 \textstyle f(x)=\int_{0}^{x}\frac{\ln(1+t)}{1+t^2}dt ,试求定积分...解决此题有两种方法,1.考虑分部积分 2.利用二次积分 【方法一】解:令 \textstyle f(x)=\int_{0}^{x}\frac{\ln(1+t)}{1+t^2}dt ,显然 f^{'}(x...)=\frac{\ln(1+x)}{1+t^2} ,根据分部积分有 \begin{align*} \displaystyle \int_{0}^{1}xf(x)dx &=\dfrac{1}{2}\int...【方法二】解:将积分转化成二次积分,再改变积分顺序有 \begin{align*} \displaystyle\int_{0}^{1}xf(x)dx &=\int_{0}^{1}dx\int_{0}^{
同时,很重要的一点是,用户需要看到自己的积分累计有多少,能够根据积分划分用户等级,在自己的空间展示积分。...如果是别的用户的操作引发了用户积分的增加,允许一定的延时;如果是用户自己的操作,必须实时看到积分变化。...例如:有用户关注了我,无论我是否马上知道,理论上我应当立即获得 4 点的积分,但是这个操作如果不实时反映到用户的积分展示上,对我影响不大;但是如果我发起结交了一位朋友,我希望马上看到我的积分增加了 5...在我积分少的时候,我希望看到积分的实时变化;如果积分超过了一定数量(例如 10000 分),积分的变化实时性变得反而没那么重要。 用户需要看到准确的积分排名吗?...map 最常见的一种数据结构就是使用一个 LRU 的 map,需要获知积分数据的时候,先根据用户的 id 去这个 map 里寻找积分数据。
大家好,又见面了,我是你们的朋友全栈君。 在之前的文章《线性代数之矩阵》中已经介绍了一些关于矩阵的基本概念,本篇文章主要就求解逆矩阵进行进一步总结。...=0,我们就称A为非奇异矩阵。奇异矩阵是没有逆矩阵的。...最后我想说的是我本来想求逆矩阵的,不凑巧找了个奇异矩阵,饶恕我吧:( 伴随矩阵 Adjugate Matrix 伴随矩阵是将matrix of cofactors进行转置(transpose)之后得到的矩阵...[3,2] 由于本篇文章的例子A是一个奇异矩阵,因此没有逆矩阵,但如果是非奇异矩阵,我们则可以按照之前的公式求得逆矩阵。...逆矩阵计算 初等变换 求解逆矩阵除了上面的方法外,还可以用更加直观的方法进行求解,这就是初等变换,其原理就是根据A乘以A的逆等于单位矩阵I这个原理,感兴趣的同学可以看参考链接中的视频。
1 概述 无穷区间的积分又称第一类反常积分。常规计算方法是将积分上限 视为常数,然后按照定积分来处理,再将计算结果取极限。如图1所示: ? ?...2 算法实现 第一类反常积分的数值算法大致思路就是不断扩展积分区间,若扩展前后的积分的相对误差满足要求,则停止计算。 ? ?...如图2所示,计算反常积分 时,先计算 ,再计算 ,然后计算 , 若 的相对误差满足要求,则停止计算。...def Improp1(Func, a, inf, eps = 1e-6): ### [a,+inf) (inf > 0时) 或者 (-inf,a](inf < 0), ### inf为积分收敛时区间的右...PS:无穷区间的长度并不是有几十万甚至几十亿那么长。本例的无穷区间在收敛时为1001.
VIO中的IMU积分 一、数值积分原理 对于一个给定的微分方程 ,假设已经知道了初值 ,则其 时刻后的数值积分为: 实际当中我们通常无法获得 的表达式,只能对其进行离散采样,然后使用离散积分逼近真实的连续积分...计算精确的恒定常数 ,针对 的通常有三种积分方法:欧拉积分、中值积分和4阶龙格-库塔积分。...二、积分方法 2.1 欧拉积分 欧拉积分假设在倒数区间内的斜率是恒定的,其取 时刻的斜率作为 至 时间段的斜率,即: 从公式可以看出,欧拉积分是最简单的一种积分方式,其逼近误差较大,但计算量很小...2.2 中值积分 中值积分是在欧拉积分的基础上进行改善。先使用欧拉积分逼近时间间隔 的中点,即 的斜率,然后使用中点斜率作为整个时间段内的近似斜率。 ...实际上4阶龙格-库塔积分就是斜率的加权结果, 与 的斜率权重为2,其余为1。显而易见,这种方法的近似精度是最高的。其中 就是欧拉积分当中的斜率, 就是中值积分当中的斜率。
领取专属 10元无门槛券
手把手带您无忧上云