知识图谱 广泛用于各种领域,它的统计信息也常被分析。但有一个问题一直缺乏研究:产出价格是多少?在此论文中,研究者提出了一种方法预估知识图谱的成本。他们表示手动创建一个三元组(triple)的成本大约在 2 到 6 美元左右,而自动创建知识图谱的成本要降低 15 到 250 倍(即一个三元组 1 美分到 15 美分)。
在本系列前面两篇文章中我一直在讨论Data Fabric,并给出了一些关于Data Fabric中的机器学习和深度学习的概念。并给出了我对Data Fabric的定义:
大语言模型有巨大的潜力,但也存在明显的缺陷。知识图谱可以使大语言模型变得更准确、透明,并且结果易于解释。
Gartner 在《2023 年人工智能技术成熟度曲线》报告中,建议企业可以考虑采取以下行动来开启知识图谱:
翻译自 How Knowledge Graphs Make Data More Useful to Organizations 。更多链接查看原文。
在本文中,我们对知识图谱进行了全面的介绍,在需要开发多样化、动态、大规模数据收集的场景中,知识图谱最近引起了工业界和学术界的极大关注。在大致介绍之后,我们对用于知识图谱的各种基于图的数据模型和查询语言进行了归纳和对比。我们将讨论schema, identity, 和 context 在知识图谱中的作用。我们解释如何使用演绎和归纳技术的组合来表示和提取知识。我们总结了知识图谱的创建、丰富、质量评估、细化和发布的方法。我们将概述著名的开放知识图谱和企业知识图谱及其应用,以及它们如何使用上述技术。最后,我们总结了未来高层次的知识图谱研究方向。
LLM 如火如荼地发展了大半年,各类大模型和相关框架也逐步成型,可被大家应用到业务实际中。在这个过程中,我们可能会遇到一类问题是:现有的哪些数据,如何更好地与 LLM 对接上。像是大家都在用的知识图谱,现在的图谱该如何借助大模型,发挥更大的价值呢?
二者展示的信息量是差不多的,但右边这种看起来更加直观。而且,随着文本篇幅的增长,这种优势会体现得更加明显。
说到人工智能技术,人们首先会联想到深度学习、机器学习技术;谈到人工智能应用,人们很可能会马上想起语音助理、自动驾驶等等,不过,在AIWorld 2017世界人工智能大会上,百度副总裁、AI技术平台体系(AIG)总负责人王海峰却没有讲这些,这次他聊的是知识图谱。 虽然你可能说不出知识图谱的具体定义,但其实每天都在使用它。当你在百度搜索时,搜索结果右侧的联想,就来自于知识图谱技术的应用;你问百度某个字怎么念,答案也来自知识图谱的应用;你和度秘聊天,问他詹姆斯和科比谁厉害、都取得了哪些成就等等,背后都是知识图谱
知识图谱是近几年来一个蛮热的词,被认为是“认知智能领域核心技术之一”,“人工智能四大领域之一”等等。甚至有了不谈知识图谱不足以号称新技术的趋势。
大型语言模型(LLM)已经很强了,但还可以更强。通过结合知识图谱,LLM 有望解决缺乏事实知识、幻觉和可解释性等诸多问题;而反过来 LLM 也能助益知识图谱,让其具备强大的文本和语言理解能力。而如果能将两者充分融合,我们也许还能得到更加全能的人工智能。
如果我们从不同的研究视角、研究目的以及多知识的不同认识程度对知识进行分类的话,可以分为以下几种:
👆点击“博文视点Broadview”,获取更多书讯 01 多模态简介 1.知识图谱的多模态数据来源 本节探讨多模态知识图谱的问题。前面曾多次提到,知识图谱的数据来源不仅仅是文本和结构化数据,也可以是图片、视频和音频等视觉或听觉形式的数据。多模态就是指视觉、听觉和语言等不同模态通道的融合。能够充分融合和利用语言、视觉和听觉等多种模态来源数据的知识图谱叫作多模态知识图谱。 一方面,凡是蕴含知识的原始数据都可以作为知识图谱构建的数据来源,例如对于图片,也需要完成类似于文本中的实体识别和关系抽取任务。另一方面,
来源:专知本文为书籍分享,建议阅读5分钟本书是在实践中从企业关系数据库设计和构建知识图谱的指南。 这本书是在实践中从企业关系数据库设计和构建知识图谱的指南。它提出了一个原则性框架,其核心是连接关系数据库和知识图谱的映射模式、组织中负责知识图谱的角色,以及将数据和人员组合在一起的过程。本书的内容适用于使用属性图或RDF图技术构建的知识图谱。知识图谱实现了创建大规模集成知识和数据的智能系统的愿景。科技巨头已经采用知识图谱作为下一代企业数据和元数据管理、搜索、推荐、分析、智能代理等的基础。我们现在发现,越来越多
如今,知识图谱对许多企业来说至关重要——它们提供了结构化数据和事实知识,以这些数据和知识驱动了许多产品,使它们更加智能化甚至“神奇”。
【引子】 关于大模型及其应用方面的文章层出不穷,聚焦于自己面对的问题,有针对性的阅读会有很多的启发,本文源自Whyhow.ai 上的一些文字和示例。对于在大模型应用过程中如何使用知识图谱比较有参考价值,特汇总分享给大家。
知识图谱作为一种特殊的信息表示技术,其在近年来在各种应用领域中都有所体现,尤其在自然语言处理(NLP)中,它的重要性更是日益凸显。知识图谱能够高效、有组织地存储和管理大量的信息,而且能够用图的形式表示出这些信息之间的关系,使得信息更具有语境,更易于理解和应用。
本节探讨多模态知识图谱的问题。前面曾多次提到,知识图谱的数据来源不仅仅是文本和结构化数据,也可以是图片、视频和音频等视觉或听觉形式的数据。多模态就是指视觉、听觉和语言等不同模态通道的融合。能够充分融合和利用语言、视觉和听觉等多种模态来源数据的知识图谱叫作多模态知识图谱。
知识图谱是一种基于图的结构化知识表示方式.如何构造大规模高质量的知识图谱, 是研究和实践面临的一个重要问题.提出了一种基于互联网群体智能的协同式知识图谱构造方法.该方法的核心是一个持续运行的回路, 其中包含自由探索、自动融合、主动反馈3个活动.在自由探索活动中, 每一参与者独立进行知识图谱的构造活动.在自动融合活动中, 所有参与者的个体知识图谱被实时融合在一起, 形成群体知识图谱.在主动反馈活动中, 支撑环境根据每一参与者的个体知识图谱和当前时刻的群体知识图谱, 向该参与者推荐特定的知识图谱片段信息, 以提高其构造知识图谱的效率.针对这3个活动, 建立了一种层次式的个体知识图谱表示机制, 提出了一种以最小化广义熵为目标的个体知识图谱融合算法, 设计了情境无关和情境相关两种类型的信息反馈方式.为了验证所提方法及关键技术的可行性, 设计并实施了3种类型的实验: 仅包含结构信息的仿真图融合实验、大规模真实知识图谱的融合实验, 以及真实知识图谱的协同式构造实验.实验结果表明, 该知识图谱融合算法能够有效利用知识图谱的结构信息以及节点的语义信息, 形成高质量的知识图谱融合方案; 基于“探索-融合-反馈”回路的协同方法能够提升群体构造知识图谱的规模和个体构造知识图谱的效率, 并展现出较好的群体规模可扩展性.
竹间科技创始人兼CEO简仁贤曾在世界人工智能大会上发表了一篇题为《认知智能赋能企业转型》的演讲,重点探讨了认知智能的基石——知识图谱,阐述了知识图谱的定义、优势等,接着围绕产业界极重视的大规模落地问题,结合具体例证及经验心得,描绘了跨越众多行业的不同应用。以下为竹间科技创始人简仁贤先生演讲内容的精彩节选。
知识图谱(knowledge graph)⼀度被专家称为“AI皇冠上的明珠”,因为知识图谱技术是⼈⼯智能技术⽅向中的重要⼀环。它不仅可以为其他⼈⼯智能应⽤提供⽀持,如⾃然语⾔处理、推荐系统等,更可以帮助⼈⼯智能系统⾃主构建和增⻓知识库,提升计算机的理解和分析能⼒,实现“认知智能”的⽬标。Gartner预测,到2025年,知识图谱技术将应⽤于80%的数据分析,⽽2021年这⼀⽐例仅为10%。 最近爆⽕的ChatGPT也是⾃然语⾔处理和理解领域的⼀个重要应⽤,虽然ChatGPT在⽣成和理解⾃然语⾔⽅⾯表现出⾊,但它的知识表⽰和推理能⼒有限,⽆法直接获取和处理结构化知识。因此,知识图谱可以为ChatGPT提供丰富的结构化知识,以增强其对话⽣成和理解的能⼒,进⽽提升对话系统的智能⽔平。
互联网的出现为大量内容创建者打开了创造内容产出信息的大门。因此,现在网络上存在大量高质量的用户生成内容。为了帮助计算机对这些文档内容有更好的理解,我们需要一种有效的方式来组织和表示这些数据。针对这个问题,人们认为可以把数据中隐藏的知识用图结构的形式进行表示,于是基于语义网概念提出了知识图谱来解决这个问题。
大家好,我是东方财富的一名算法工程师,这里分享一些利用大模型赋能知识图谱建设的一些实践。
知识图谱最早由谷歌发布,为了提升搜索引擎返回答案的质量以及用户查询的效率,在知识图谱辅助下,搜索引擎可以洞察到用户查询背后的一个语义信息,然后返回更为精准结构化的信息,从而更大可能的去满足用户的一个查询需求。
在当前大数据行业中, 随着算法的升级, 特别是机器学习的加入,“找规律”式的算法所带来的“红利”正在逐渐地消失,进而需要一种可以对数据进行更深一层挖掘的方式,这种新的方式就是知识图谱。 下面我们来聊一下知识图谱以及知识图谱在达观数据中的实践。 NO.1 知识图谱和 Neo4j 浅析 什么是知识图谱 知识图谱(Knowledge Graph)是一种用点来代替实体,用边代替实体之间关系的一种语义网络。通俗来说,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到
幻觉是与大型语言模型(LLM)一起工作时常见的问题。LLM能够生成流畅连贯的文本,但往往会产生不准确或不一致的信息。避免LLM产生幻觉的方法之一是使用外部知识源,如数据库或知识图谱,提供事实信息。
上周我参加了在加利福尼亚州蒙特雷举办的国际语义网络、会议(ISWC),并在 Ada Lovelace 纪念日当天就爱思唯尔(Elsevier)在衡量和解决研究领域中的性别差异方面所做的工作发表演讲(详见:https://www.elsevier.com/research-intelligence/resource-library/gender-report)。会议的其他部分就像是一场回到过去的旅程……当然是以不错的方式回去的 :-)
---- 新智元报道 来源:Google AI 编辑:LRS 【新智元导读】预训练的经验来说,数据越多,效果越好!Google最近在NAACL 2021上发了一篇文章,可以从知识图谱中自动生成文本数据,再也不怕语料不够用了! 大型预训练自然语言处理(NLP)模型,如 BERT、 RoBERTa、 GPT-3、 T5和 REALM,充分利用了来自 Web 的巨型自然语言语料库,对特定任务的标注数据进行微调,获得一个效果特别好的预训练,并在某些NLP任务中甚至超过了人类的表现。 然而,自然语言文本本身
使用 大型语言模型 (LLM) 提取知识图谱既耗时又容易出错。这些困难源于 LLM 被要求从内容中提取细粒度的、特定于实体的信息。受 向量搜索优势 的启发,特别是从相对较少清理的内容中获取良好结果的能力,让我们探索一个粗粒度的 知识图谱——内容知识图谱——专注于内容之间的关系。
创建了一个知识图谱常见问题问答专区,大家有什么问题,可以直接在下面留言。同时我也会把技术交流群中关于知识图谱的问题,汇总到这里。
知识图谱最早由谷歌公司在2012年提出,其使用语义检索的方法从多种语言的数据源(例如FreeBase、维基百科等)收集信息并加工,以提高搜索质量、改善搜索体验。实际上,2006年Tim Berner-Lee就提出了Linked Data也就是一种在万维网数据上创建语义关联的方法。再往前追溯,语义链网络(Semantic Link Network)已经有了比较系统的研究,旨在创立一个自组织的语义互联方法来表达知识来支持智能应用,系统性的理论和方法可以参考H. Zhuge在2004年发表的《The Knowledge Grid》一文。
在使用大型语言模型(llm)时,幻觉是一个常见的问题。LLM生成流畅连贯的文本,但往往生成不准确或不一致的信息。防止LLM产生幻觉的方法之一是使用提供事实信息的外部知识来源,如数据库或知识图谱。
“知识就是力量”我们耳熟能详,但培根的这句话其实还有后半句“更重要的是运用知识的技能”。对于人工智能来说,知识图谱就是其如何对知识进行运用的技能体现。在金融领域,如何运用这一技能更好地理解客户需求,提高业务效率和客户满意度,同时进行风险管理?招商银行给出了他们的答案。 作者 | 李金龙、贺瑶函、郑桂东 出品 | 新程序员 知识图谱是一种用于描述实体、属性和它们之间关系的结构化语义网络,通常以图形模型的形式呈现。知识图谱可以帮助机器理解信息,并支持自然语言处理、搜索引擎优化等领域的发展。应用在招商银行的业务场
地址:http://knowledgegraph.today/paper.html
👆点击“博文视点Broadview”,获取更多书讯 基于电子商务平台上亿级的庞大商品库,电子商务交易得以不断增长。 为了更好地支持日常业务,需要将这些海量的商品以一种更优的方式进行描述、存储和计算,并且需要支持融合不同来源的数据,建立实体之间的语义连接,因此采用了知识图谱这种数据构架。 阿里巴巴积累了上千亿规模的商品数据作为商品知识图谱,这些数据来源于淘宝、天猫、阿里巴巴等在内的多个阿里旗下平台,囊括了品牌制造商、消费者、国家机构、物流提供商等多方利益相关者的数据。 从知识产权保护或购物体验的角度来看,商
知识图谱是一种用图模型来描述知识和建模世界万物之间关联关系的技术方法。本文研究的是爱奇艺奇搜知识图谱的构建流程与应用场景,了解这一文娱行业知识图谱是如何帮助用户精确找到想要的内容、回答用户问题、以及理解用户搜索意图的。
导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。 本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。 对于读者,我们不要求有任何AI相关的背景知识。
现在的项目程序中存在着大量重复的代码片段,尤其是在软件开发的时候。在本文中,我们提出了一个工具包(KG4Py),用于在GitHub存储库中生成Python文件的知识图谱,并使用知识图谱进行语义搜索。在KG4Py中,我们删除了31.7万个Python文件中的所有重复文件,并通过使用具体语法树(CST)构建Python函数的代码知识图谱来执行这些文件的静态代码分析。我们将预先训练的模型与无监督模型集成后生成新模型,并将该新模型与代码知识图谱相结合,方便搜索具有自然语言描述的代码片段。实验结果表明,KG4Py在代码知识图谱的构建和代码片段的语义搜索方面都取得了良好的性能。
梅西(Lionel Messi)无需介绍,甚至不喜欢足球的人都听说过,最伟大的球员之一为这项运动增光添彩。这是他的维基百科页面:
2016 年起,人工智能成为中国开发者重点关注的技术领域,以深度学习驱动的计算机视觉、自然语言处理、语音相关技术成为渗透最广的三个 AI 技术领域。然而,在这样的背景下,AI 仍是一个非常前沿的学科,对于中国开发者而言有很多需要克服的障碍,首当其冲的就是算法成熟度问题。此外,不同领域不同产业的 AI 应用场景复杂度与日俱增,给很多开发者树立了天然门槛。
Writer 首席执行官 May Habib 说,其语义图形化方法是使用向量数据库对 RAG 进行区块划分过程的替代方案。
他们做了个名为TEKGEN的AI模型,直接将知识图谱用“人话”再描述一遍,生成语料库,再喂给NLP模型训练。
导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。对于读者,我们不要求有任何AI相关的背景知识。
本课程从知识图谱的历史由来开展,讲述知识图谱与人工智能的关系与现状;知识图谱辐射至各行业领域的应用;在知识图谱关键技术概念与工具的实践应用中,本课程也会讲解知识图谱的构建经验;以及达观在各行业领域系统中的产品开发和系统应用。
2012年Google发布知识图谱以来,知识图谱技术飞速发展,其理论体系日趋完善,其应用效果日益明显。在知识图谱技术的引领下,知识工程新的历史篇章——大数据知识工程已初具轮廓;在知识图谱技术的推动下,各行各业的智能化升级与转型的宏伟画卷正逐步展开。
大家好,欢迎来到 InstaGraph,这是一款将文本或网址转换为富有洞察力的知识图谱的应用程序。对复杂主题中实体之间的关系感到好奇吗?只需将文本输入 InstaGraph,即刻呈现出一张精美的知识图谱。
话接上文《图技术在 LLM 下的应用:知识图谱驱动的大语言模型 Llama Index》 同大家简单介绍过 LLM 和图、知识图谱相关的结合,现在我来和大家分享下最新的成果。毕竟,从 GPT-3 开始展现出超出预期的“理解能力“开始,我一直在做 Graph + LLM 技术组合、互补的研究、探索和分享,截止到现在 NebulaGraph 已经在 LlamaIndex 与 Langchain 项目做出了不少领先的贡献。
随着信息的爆炸性增长,构建能够理解、推理和应用知识的系统变得愈发重要。知识图谱作为一种结构化的知识表示方式,与自然语言处理(NLP)的结合将为构建更智能的系统打开崭新的可能性。本文将深入研究NLP在知识图谱中的应用,从基础概念到实际应用,揭示这一领域的发展趋势和潜在挑战。
随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。 在一项任务中,只要有关系分析的需求,知识图谱就“有可能”派的上用场。
领取专属 10元无门槛券
手把手带您无忧上云