首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

相似领域不同版本回归中的迁移学习

是一种机器学习方法,用于解决在相似领域中不同版本的软件回归测试问题。当软件升级或者更新版本时,传统的回归测试需要重新构建测试用例和执行测试,这是一项耗时且昂贵的过程。

迁移学习的目标是通过利用源领域(旧版本)上已有的知识来加速目标领域(新版本)的回归测试。它可以将源领域的模型、特征、标签等知识迁移到目标领域,从而减少目标领域上的数据标注和模型训练的工作量。

迁移学习的主要分类包括基于特征的迁移学习、基于模型的迁移学习和基于实例的迁移学习。在相似领域不同版本回归中,可以利用基于特征的迁移学习方法,通过选择和调整合适的特征集合,将源领域上的特征知识应用到目标领域上的回归测试中。

相似领域不同版本回归中的迁移学习可以带来以下优势:

  1. 减少回归测试的时间和成本:通过利用已有的知识,避免重新构建测试用例和执行测试的过程,从而节省大量时间和资源。
  2. 提高测试的准确性和可靠性:通过应用源领域上的知识,可以更好地捕捉目标领域中的变化和演化,提高测试的准确性和可靠性。
  3. 支持软件升级和更新:迁移学习可以在软件升级或者更新版本时快速适应新的环境和需求,减少回归测试的难度和风险。

在云计算领域中,相似领域不同版本回归中的迁移学习可以应用于云平台、云服务、云应用等方面的回归测试。例如,在云平台的不同版本之间进行回归测试时,可以利用迁移学习方法来加速测试过程,提高测试效率和质量。

腾讯云提供了多个相关产品和服务,可以支持相似领域不同版本回归中的迁移学习。其中,腾讯云机器学习平台(https://cloud.tencent.com/product/tiia)提供了强大的机器学习能力,可以用于迁移学习的模型构建和训练。另外,腾讯云数据万象(https://cloud.tencent.com/product/ci)可以用于图像处理和特征提取,为迁移学习提供支持。

总结起来,相似领域不同版本回归中的迁移学习是一种用于加速回归测试的机器学习方法。它可以利用已有的知识和模型,在不同版本的软件中快速适应新的环境和需求,从而减少回归测试的时间和成本,并提高测试的准确性和可靠性。在云计算领域,腾讯云提供了相关产品和服务,支持相似领域不同版本回归中的迁移学习的应用。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【深度学习迁移学习领域转移及迁移学习分类

例如,两个国家玉米田即使具有相似的反射率,其产量也可能不同,因为灌溉或虫害防治等因素可能影响作物产量,但遥感观测无法完全捕捉到这些因素,从而导致特征变量与响应变量之间关系不同。...其思想是将模型在源域中学习知识和特征表示转移到目标域中完成任务,减少所需数据量,提高模型在目标域中精度和效率。基于不同类型域转移特点和标记数据可及性,开发了不同迁移技术。...迁移学习技术分类 基于微调迁移学习 基于微调TL (FTL)是深度神经网络(DNN)一种流行TL技术,已广泛应用于各种遥感应用(Gadiraju和Vatsavai, 2020;Wang等人,2018b...在MTL中,每个学习任务都可以看作是一个域。MTL目标是最大化模型泛化性,并提高模型在一个或多个任务上性能。所有领域都有一个共享特性集,而它们学习任务不同但又相关。...最后,当没有合适源域并且有大量未标记数据可用时,最好使用SSL。此外,混合迁移学习(HTL)结合了两种或多种不同迁移学习方法,在某些条件下可能是一种有效技术。

80910

NLP领域迁移学习现状

NAACL 2019 tutorial 完整呈现 在过去一年多时间里,以预训练模型形式进行迁移学习已经成为NLP领域主流,许多任务基准都因而得到极大地提升。...在当前自然语言处理领域中,也同样普遍存在着不同类型迁移学习。这大致可以从三个维度进行分类:a)源设置和目标设置是否处理相同任务;b)源域和目标域是否有相同属性;c)task学习顺序是否相同。...如下所示: 图 3:序列迁移学习一般过程 我们将在本文介绍 NLP 领域迁移学习现状。本文是NAACL 2019 关于迁移学习 tutorial 内容扩展。...在本文中,我们对迁移学习定义为: 迁移学习是一种从源设置(source setting)中提取知识,然后应用到不同目标设置(target setting)方法。...七、获得更多学习信号 目标任务通常都缺少资源. 我们通常可以通过组合多种不同学习信号来提高迁移学习性能。

88041
  • 多应用领域“大数据” “小数据”迁移学习技术 | 迁移学习

    迁移学习实现将特定领域模型应用到多个目标领域中,能够促进目标领域模型学习成长,并降低目标领域内对于数据量和类型要求,实际上就是利用已有先验信息来优化模型学习内容。...这个例子足以说明迁移学习应用前提,即至少包括两个领域,一个领域已经积累了足够多数据,能够成功地建立算法模型;另外一个领域数据量不大,但是和前面那个领域是相互关联,这时就可以把前一个领域模型迁移过来给后一个领域使用...实现迁移学习方法 1)样本迁移,就是我们在数据集里面找到跟目标领域相似的数据,把这个数据放大多倍,这个叫做样本迁移,通过样本来达到迁移目的; 2)特征迁移,可以观察到有些相似的特征,然后利用这些特征...,在不同层次特征,来进行自动迁移; 3)基于模型迁移学习,利用上千万图象来训练一个图象识别的系统,我们遇到一个新图象领域,我们就不用再去找几千万个图象来训练了,我们就把原来那个迁移到新领域...,所以在新领域只用几万张图片就够,同样可以得到很高效果,模型迁移一个好处是我们可以区分,就是可以和深度学习结合起来,我们可以区分不同层次可迁移度,相似度比较高那些层次他们被迁移可能性就大一些

    1.7K30

    ICML2018见闻 | 迁移学习、多任务学习领域进展

    可行三种方法有迁移学习、多任务学习(从技术角度来讲,这个方法是一种类似领域自适应迁移学习,但在本文中我会将它们看作不同方法来讨论)以及半监督学习。...这是迁移学习形式之一,因为从本质上来看,训练过程中你是在进行知识迁移。 域自适应:与微调很相似,唯一不同是这里是域改变而非标签集。...论文中用以描述 L2T 工作流程图片 作者是这样解释: 不像 L2T,所有现有的迁移学习算法研究都是从零开始迁移,例如:只考虑一对兴趣领域,而忽略了之前迁移学习经验。...,对“课程学习” (curriculum learning) 进行了深入研究,这一说法来源于教育和心理学领域,其目的是在有一定发展前提规则下,学习更多不同概念。...该论文还特别关注了迁移学习和课程学习之间关系,以及课程学习和训练所用到例子顺序之间关系。这里要注意一点是,这种类型迁移与之前讨论类型有所不同

    1.1K31

    迁移学习在自然语言处理领域应用

    迁移学习        迁移学习近年来在图形领域中得到了快速发展,主要在于某些特定领域不具备足够数据,不能让深度模型学习很好,需要从其它领域训练好模型迁移过来,再使用该模型进行微调,使得该模型能很好地拟合少量数据同时又具备较好泛化能力...由于深度学习模型结构复杂,在NLP领域迁移学习不够成熟,不知道如何进行迁移迁移模型哪个结构部分、源数据集合与目标数据集合之间需要满足怎样关系。...本文以CNN文本分类任务为例进行描述,总结一下迁移学习在NLP领域文本分类任务中一些经验。...经验与建议 经验 (1)目标数据集合与源数据集合在语义上太相似,反而会影响迁移学习效果,部分相似效果最好; (2)源数据集合词典大小越大、OOV比例越小,迁移效果越好; (3)对于Embedding...层迁移,无论是固定不变、还是微调效果都挺好; (4)对于卷积层和隐层,若模型参数固定不变,很难提高迁移学习效果,除非目标数据集合与源数据集合语义上非常相似、很少OOV、具备很大词典; (5)输出层参数迁移效果很差

    97330

    迁移学习在自然语言处理领域应用

    迁移学习 迁移学习近年来在图形领域中得到了快速发展,主要在于某些特定领域不具备足够数据,不能让深度模型学习很好,需要从其它领域训练好模型迁移过来,再使用该模型进行微调,使得该模型能很好地拟合少量数据同时又具备较好泛化能力...由于深度学习模型结构复杂,在NLP领域迁移学习不够成熟,不知道如何进行迁移迁移模型哪个结构部分、源数据集合与目标数据集合之间需要满足怎样关系。...本文以CNN文本分类任务为例进行描述,总结一下迁移学习在NLP领域文本分类任务中一些经验。 CNN文本分类模型框架 ?...经验与建议 经验 (1)目标数据集合与源数据集合在语义上太相似,反而会影响迁移学习效果,部分相似效果最好; (2)源数据集合词典大小越大、OOV比例越小,迁移效果越好; (3)对于Embedding...层迁移,无论是固定不变、还是微调效果都挺好; (4)对于卷积层和隐层,若模型参数固定不变,很难提高迁移学习效果,除非目标数据集合与源数据集合语义上非常相似、很少OOV、具备很大词典; (5)输出层参数迁移效果很差

    60840

    小白学习MySQL - 不同版本创建用户些许区别

    最近创建过程中,发现不同版本操作有些区别。...小白学习MySQL, 《小白学习MySQL - 随机插入测试数据工具》 《小白学习MySQL - varchar类型字段为什么经常定义成255?》...《小白学习MySQL - 变通创建索引案例一则》 《小白学习MySQL - “投机取巧”统计表记录数》 《小白学习MySQL - 一次慢SQL定位》 《小白学习MySQL - TIMESTAMP类型字段非空和默认值属性影响...校验规则》 《小白学习MySQL - max_allowed_packet》 《小白学习MySQL - mysqldump保证数据一致性参数差异》 《小白学习MySQL - 查询会锁表?》...《小白学习MySQL - 索引键长度限制问题》 《小白学习MySQL - MySQL会不会受到“高水位”影响?》

    86840

    4个计算机视觉领域用作迁移学习模型

    迁移学习是机器学习和人工智能一个分支,其目的是将从一个任务(源任务)中获得知识应用到一个不同相似的任务(目标任务)中。...迁移学习是指从相关已经学习任务中迁移知识,从而对新任务中学习进行改进 总而言之,迁移学习是一个让你不必重复发明轮子领域,并帮助你在很短时间内构建AI应用。 ?...迁移学习历史 为了展示迁移学习力量,我们可以引用Andrew Ng的话: 迁移学习将是继监督学习之后机器学习商业成功下一个驱动因素 迁移学习历史可以追溯到1993年。...1997年7月,“Machine Learning”杂志发表了一篇迁移学习论文专刊。随着该领域深入,诸如多任务学习等相邻主题也被纳入迁移学习领域。...“Learning to Learn”是这一领域先驱书籍之一。如今,迁移学习是科技企业家构建新的人工智能解决方案、研究人员推动机器学习前沿强大源泉。 ? 迁移学习是如何工作

    1.1K40

    基于对比半监督学习相似解剖结构领域自适应分割

    半监督学习(SSL)方法有望减少对标注需求,但当数据集大小和标注图像数量较小时,其性能仍然有限。利用具有相似解剖结构现有注释数据集来辅助训练具有改进模型性能潜力。...然而,由于图像模态甚至目标域中不同器官,它还受到跨解剖域移动挑战。...为了解决这个问题,本文提出了用于跨解剖域自适应对比半监督学习(CS-CADA ),该学习调整模型以分割目标域中相似结构,通过利用源域中相似结构一组现有注释图像,只需要目标域中有限注释。...作者使用特定领域批量标准化(DSBN)来分别标准化两个解剖领域特征图,并提出一种跨领域对比学习策略来鼓励提取领域不变特征。它们被集成到SE-MT框架中,以利用具有预测一致性约束未标记目标域图像。...大量实验表明,本文中CS-CADA能够解决具有挑战性交叉解剖结构域偏移问题,在视网膜血管图像帮助下实现X射线图像中冠状动脉精确分割,并借助眼底图像分别在目标域中给出少量注释。

    57820

    从FastJson库不同版本源码中对比学习绕过方法

    从这个版本fastjson中,对前面的漏洞进行了修复,引入了checkAutoType安全机制,默认autoTypeSupport关闭,不能直接反序列化任意类,而打开 AutoType 之后,是基于内置黑名单来实现安全...autoTypeSupport:是否开启任意类型反序列化,默认关闭; denyList:反序列化类黑名单; acceptList:反序列化类白名单。...dataSourceName": "ldap://127.0.0.1:8888/EvilObject", "autoCommit": true } } (向右滑动、查看更多) 条件限制 和上一个版本是一样...: 有网 开启AutoType 1.2.25<=fastjson<=1.2.43反序列化漏洞 漏洞分析 这个版本在ParserConfig#checkAutoType中做出了修改。...fastjson1.2.44 分析 这个版本主要是修复了上一个版本利用[进行绕过方法。 参考: https://su18.org/

    77730

    不同领域、框架,这是一份超全深度学习模型GitHub集合

    项目地址:https://modelzoo.co/ 深度学习近来是机器学习最流行领域,因为针对高维数据拥有强大建模能力,它在很多不同任务与领域都绽放了夺目的光彩,例如计算机视觉、自然语言处理与智能体学习等...目前深度学习主要通过不同层级神经元从原始数据自动抽取特征,它学习表示往往比传统 ML 手动设计表示有更好性能。...目前 GitHub 上受关注 ML 实现大部分都是深度学习模型,它们以不同层级结构与网络架构建立起一个个解决具体问题模型。...因为应用众多作者将其划分为计算机视觉与强化学习领域。...CycleGAN 主要想法是训练两对生成器-判别器模型以将图像从一个领域转换为另一个领域。在这过程中我们要求循环一致性,即在对图像应用生成器后,我们应该得到一个相似于原始 L1 损失图像。

    77500

    不同领域、框架,这是一份超全深度学习模型GitHub集合

    项目地址:https://modelzoo.co/ 深度学习近来是机器学习最流行领域,因为针对高维数据拥有强大建模能力,它在很多不同任务与领域都绽放了夺目的光彩,例如计算机视觉、自然语言处理与智能体学习等...目前深度学习主要通过不同层级神经元从原始数据自动抽取特征,它学习表示往往比传统 ML 手动设计表示有更好性能。...目前 GitHub 上受关注 ML 实现大部分都是深度学习模型,它们以不同层级结构与网络架构建立起一个个解决具体问题模型。...因为应用众多作者将其划分为计算机视觉与强化学习领域。...CycleGAN 主要想法是训练两对生成器-判别器模型以将图像从一个领域转换为另一个领域。在这过程中我们要求循环一致性,即在对图像应用生成器后,我们应该得到一个相似于原始 L1 损失图像。

    54230

    清华与微软团队联合提出基于领域知识迁移学习神经信息检索

    作者 | 清华&微软团队 编辑 | 陈大鑫 随着深度学习快速发展,神经网络模型在CV、NLP等很多领域已经取得了显著超越传统模型效果。然而,在信息检索领域,神经网络模型有效性却仍然受到质疑。...在本文中,我们重点介绍第二步,以及如何更好领域知识迁移到文档重排序模型中。...这时就需要领域知识迁移学习(如下图)派上用场,有两个方面可以实现它:融合外部知识、基于弱监督信号训练;这二者可以增强神经网络模型在信息检索模型中效果。...基于领域知识迁移神经信息检索模型 3 融合外部知识神经信息检索模型 在信息检索场景中,用户检索词通常包含知识图谱实体信息,通过引入领域内知识图谱可以帮助我们提升检索模型效果,帮助模型更好理解相应实体语义信息...2、支持领域知识迁移学习,显著提升模型效果。

    1K20

    机器之心专访杨强教授:联邦迁移学习与金融领域AI落地

    在过去一年多时间里,有哪些方向出现了令人瞩目的进展? 首先是层次感。这方面进展非常迅速。业界发现深度学习天然适合做迁移学习,正是因为深度学习不同层次负责编码不同知识。...因此多层次特征学习有很多种可行结构:一是多视角,让不同输入分别进入不同初始层,处理后共享一些中间层;另一种是利用对抗结构,例如 GAN 和 DANN,筛出不同领域间可共享特征。...这个问题输入是算法参数和描述不同领域参数,优化函数是所有样本期望损失最低,学出来迁移器既挑选模型,也学习参数。这个工作主题是「学习如何学习」,和时下流行 AutoML 有紧密联系。...那么通过遮挡不同部分,就可以用一个样本完成不同任务。Yann 描述这个方法被业界称作「自监督学习」。 我觉得自监督学习可以和迁移学习结合来做。...因此可以根据领域间距离定量地确定迁移程度:如果两个领域相距很远,那么可以只迁移最下方几层,如果两个领域相似,则可以多迁移几层。

    1.3K10

    动态 | NVIDIA 迁移学习工具包 :用于特定领域深度学习模型快速训练高级SDK

    AI 科技评论按:NVIDIA 迁移学习工具包对于深度学习应用开发人员和数据科学家来说是理想工具,这些开发人员和数据科学家正在为各种行业垂直领域(如智能视频分析(IVA)和医学成像)寻求更快、更高效深度学习训练工作流程...许多应用开发者和数据科学家都正在为智能视频分析(IVA)、医疗影像等各种垂直领域寻找更快、更高效深度学习训练工作流程。...迁移学习工具包通过允许开发人员微调 NVIDIA 提供特定领域预训练模型来抽象和加速深度学习训练,而不是从头开始花大量时间来从零开始(说明一下,「从零开始」这个词很重要,它是迁移学习最关键特点)构建深层神经网络...「迁移学习」意味着可以从现有神经网络中提取已学习特征,并通过从现有神经网络转移权重来迁移这些已学习特征。...用于 IVA 迁移学习工具包中已经包括了下面这些预训练图像分类与目标检测模型: ? 医学影像端到端深度学习流程 ?

    55010

    学习笔记】一些 人工智能 领域名词详细解释总结

    在简单线性回归中,只有一个自变量和一个因变量。在多元线性回归中,有多个自变量和一个因变量。...五、迁移学习 迁移学习是指通过将一个领域知识或经验迁移到另一个领域来改善模型性能机器学习方法。...同时,迁移学习也可以将不同领域知识结合起来,从而更好地解决复杂任务。迁移学习已经在计算机视觉、自然语言处理、推荐系统等多个领域取得了成功应用。...7.1 聚类 聚类(clustering)是一种无监督学习技术,旨在将数据集中对象(样本)分为不同组(类别、簇),使得同一组内对象相似度较高,不同组之间对象相似度较低。...聚类算法目标是找到一个合理聚类结构,使得聚类内部相似度高,聚类之间相似度低。 聚类算法可以应用于各种不同领域,如图像分割、社交网络分析、医疗诊断、市场营销、数据挖掘等。

    10510

    这么多机器学习应用场景,金融领域到底有何不同

    金融服务公司希望挖掘出机器学习独特价值,但对于数据科学运作原理以及如何使用它,他们仅有一个模糊概念。 他们一次次面临相似的挑战,比如缺乏合理业绩考核指标。这导致了不切实际估算并耗尽了预算。...数据科学家们需要在应用前根据各个领域不同商业案例情况对算法进行调整。 所以如果Google某个现存解决方案能够解决你所在领域特定问题,你也许可以使用它。...训练数据集越大越干净,机器学习解决方案结果就越准确。 你可以一边继续使用现有的机器学习算法,一边尽可能多训练你模型。 并不存在广泛适用于不同商业案例机器学习方案。...如果你项目涉及这些用例的话,尽量用现成,因为自己算法优于谷歌,亚马逊或者IBM可能性很低, 金融领域机器学习和其他领域有何区别? 在我看来,主要区别源于数据不同。...在金融领域,数据噪声(非常)大,而且通常是不稳定。“信号”不能用任何特定方法与噪声剥离,这是原则性问题。举例来说,这和图像处理就很不同,图像处理至少原则上可以控制噪声等级。

    46630

    oracle不同版本间数据导入导出oracle IMP 命令详解--Java学习

    下面是据此总结几个使用规则和相关测试: 规则1:低版本exp/imp可以连接到高版本(或同版本数据库服务器,但高版本exp/imp不能连接到低版本数据库服务器 --1.1 使用9i客户端通过...exp出dmp文件,低版本无法imp(无法识别dmp文件) --2.1 使用10g客户端exp出10g数据 C:\Documents and Settings\yuechaotian>exp userid...,标题验证失败 IMP-00000: 未成功终止导入 C:\Documents and Settings\yuechaotian> 规则3:低版本exp出dmp文件,高版本可以imp(向下兼容...C:\Documents and Settings\yuechaotian> 规则4:从Oracle 低版本Export数据可以Import到Oracle高版本中,但限于Oracle相邻版本,如从...--我使用10gimp功能,可以将由817导出dmp文件直接导入10g中,这与该规则介绍不同

    2.4K30
    领券