数据清洗 一般义的清洗 特殊字符 在数据清洗中最常见的就是特殊字符,一般的特殊字符可以直接替换掉如地址码中最常见的’#’,像这种直接替换为号即可。...全角半角转换 数据由于来源或采集问题,可能会有全角的数字或字母,而一般的系统都不会允许有这种问题,所以需要将这些问题在清洗步骤中处理掉。...错/别字处理 错别字问题在数据清洗中是难度比较大的一部分工作,在这部分工作中,首先要找出错别字,并建立错别字对应的正确字符串的对应关系,然后使用程序批量的完成替换 空值检测 空值是要在数据清洗中过滤掉的...清洗中常用的工具与技术 如果要做地理数据的相关处理,那么FME是应该首选工具,当然,清洗也属于数据处理的范畴。...但在进行数据处理的时候,要秉承一个原则,在有选择的时候,能少些代码就少些代码! 综上,在数据清洗中,能够掌握FME与Python基本就够了,如果你还会点正则,那就基本上是完美了!
这篇文章讲述的是数据存储方式和数据类型等基本概念、数据清洗的必要性和质量评价的关键点。希望这篇数据清洗的文章对您有所帮助!...二、数据清洗 1、什么是数据清洗 脏数据 ?...数据清洗在大数据分析流程中的位置 ?...2、为什么要进行数据清洗 从不同渠道获得的数据,集成在一起,组成新的数据集,需要进行数据清洗,来保证数据集的质量 数据分析算法对输入的数据集有要求 显示情况下的数据集质量不禁如人意,需要数据清洗 3、数据存在的问题...四、数据清洗的主要内容 ?
数据的质量直接关乎最后数据分析出来的结果,如果数据有错误,在计算和统计后,结果也会有误。 所以在进行数据分析前,我们必须对数据进行清洗。...需要考虑数据是否需要修改、如何修改调整才能适用于之后的计算和分析等。 数据清洗也是一个迭代的过程,实际项目中可能需要不止一次地执行这些清洗操作。...如果数据不存在或不符合数值规则 用nan填充 delimiter 以什么符号进行分割 skiprows=12 跳过开头12行 数据是从第13行开始的 usecols 就是获取下标为6,7列 的内容...=',', usecols=(6,7), unpack=True) # 读取后的数据类型:numpy.ndarray 缺省数据处理 01 直接填充 适合格式 DataFrame, numpy.ndarray...,没有头标签的要加上header, header=None 否则数据显示有问题 数据被会names(列标签)占用,可以先读取,获取 行和列,如果没有头标签,再设置names标签 其他参数: 文件读取部分数据
Pandas 数据清洗常见方法 01 读取数据 df=pd.read_csv('文件名称') 02 查看数据特征 df.info() 03 查看数据量 df.shape 04 查看各数字类型的统计量 df.describe...('店名')['销售额'].sum().sort_values 12 遍历查看数据集所有列的数据类型 cols=df_tm.columns for col in cols: print(col+':'...+str(df_tm[col].dtype)) 13 转换数据类型 df['列名']=df.列名.astype('int') 01 去掉温度列后的℃,并将数据转为int类型 df.loc[:,'bwendu...']=df['bwendu'].str.replace('℃','').astype('int32') 02 对某列数据转换类型 data['列名']=data['列名'].astype(int) 14...删除指定列中有空值的行 mydf.dropna(subset=['列名'],inplace=True) mysf=mydf.dropna(subset=['列名']) 15 过滤某列中不符合类型的数据
数据清洗是整个数据分析过程的第一步,就像做一道菜之前需要先择菜洗菜一样。数据分析师经常需要花费大量的时间来清洗数据或者转换格式,这个工作甚至会占整个数据分析流程的80%左右的时间。...在这篇文章中,我尝试简单地归纳一下用Python来做数据清洗的7步过程,供大家参考。...尝试去理解这份数据集 我们可以通过对数据集提问来判断这份数据能不能满足解答我们的问题,数据是否干净需不需要进一步处理,问题包括但不限于: 数据集多少数据? 包含了什么字段?字段格式是什么?...# 可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。 DataDF.isnull().sum().sort_values(ascending=False) ?...可能会存在有标点符号掺杂/大小写不一致/空格重复出现等问题 6)消灭空值:CustomerID、Description、Country和UnitPrice都出现了NaN值,需要去掉 于是下面就开始后续的数据清洗
平时习惯了在某些特定的数据集合上做实验,简单的tokenization、预处理等步骤就足够了。但是在数据越来越大的年代,数据清洗越来越重要,也越来越复杂。...数据给你了,那就要处理,但这些数据可能经常是: 不完整的(某些记录的某些字段缺失) 前后不一致(字段名和结构前后不一) 数据损坏(有些记录可能会因为种种原因被破坏) 因此,你必须经常维护你的清洗程序来清洗这些原始数据...在一部分数据上进行测试 不要尝试一次性清洗所有数据。当你刚开始写清洗代码和debug的时候,在一个规模较小的子集上进行测试,然后扩大测试的这个子集再测试。...这样做能够让原始数据作为一个字段保存在清洗后的数据当中,在清洗完之后,如果你发现哪条记录不对劲了,就能够直接看到原始数据长什么样子,方便你debug。...不过,这样做的坏处就是需要消耗双倍的存储空间,并且让某些清洗操作变得更慢。所以这一条只适用于效率允许的情况下。 验证清洗后的数据 记得写一个验证程序来验证你清洗后得到的干净数据是否跟你预期的格式一致。
每次爬虫获取的数据都是需要处理下的。 所以这一次简单讲一下Pandas的用法,以便以后能更好的使用。 数据整合是对数据进行行列选择、创建、删除等操作。...数据清洗则是将整合好的数据去除其中的错误和异常。 本期利用之前获取的网易云音乐用户数据,来操作一番。 / 01 / 数据整合 首先读取数据。...使用数据框的方法drop。...04 纵向连接 数据的纵向合并指的是将两张或多张表纵向拼接起来,使得原先两张或多张表的数据整合到一张表上。.../ 02 / 数据清洗 01 重复值处理 Pandas提供了查看和删除重复数据的方法,具体如下。
在高级数据采集部分就是要帮你分析原始数据,获取隐藏在数据背后的故事——网站的真实故事其实都隐藏在 Javascript、登录表单和网站反爬措施背后。...数据清洗 到目前为止,我们都没有处理过那些样式不规范的数据,要么使用的是样式规范的数据源,要么就是放弃样式不符合我们预期的数据。但在网络数据采集中,你通常无法对采集的数据样式太挑剔。...下面我们就通过工具和技术,通过改变代码的编写方式,帮你从源头控制数据凌乱的问题,并且对已经入库的数据经行清洗。 编写代码清洗数据 和编写异常处理代码一样,你应该学会编写预防型代码来处理意外情况。...我们可以定制一些规则让数据变得更规范: 剔除单字符的“单词”,除非这个单词是“a”或“i”; 剔除维基百科的引用标记(方括号包裹的数字,入1) 剔除标点符号 现在“清洗任务”列表变得越来越长,让我们把规则都移出来...本期关于数据清洗就是如上内容,在接下来的内容中我会讲解数据标准化,以及存储的数据如何清洗。
数据常用筛选方法 在数据中,选择需要的行或者列 基础索引方式,就是直接引用 ioc行索引名称或者条件,列索引名称或者标签 iloc行索引位置,列索引位置 import pandas as pd import...os import numpy as np os.getcwd() 'D:\\Jupyter\\notebook\\Python数据清洗实战\\数据清洗之数据表处理' os.chdir('D:\\Jupyter...\\notebook\\Python数据清洗实战\\数据') df = pd.read_csv('baby_trade_history.csv', encoding='utf-8', dtype={'user_id... 1 20121101 df.columns # 查看数据字段 Index([
数据整理 定义 在数据清洗过程中,很多时候需要将不同的数据整理在一起,方便后续的分析,这个过程也叫数据合并 合并方法 常见的合并方法有堆叠和按主键进行合并,堆叠又分为横向堆叠和纵向堆叠,按主键合并类似于...import xlrd import os import pandas as pd import numpy as np os.getcwd() 'D:\\Jupyter\\notebook\\Python数据清洗实战...\\数据清洗之数据表处理' os.chdir('D:\\Jupyter\\notebook\\Python数据清洗实战\\数据') workbook = xlrd.open_workbook('meal_order_detail.xlsx...dtype={'user_id': str}) df1 = pd.read_csv('sam_tianchi_mum_baby.csv', dtype={'user_id': str}) # 基本信息数据...th>4 10642245 20130213 0 # 交易数据
“数据科学家们80%的精力消耗在查找、数据清理、数据组织上,只剩于20%时间用于数据分析等。”——IBM数据分析 数据清洗是处理任何数据前的必备环节。...在你开始工作前,你应该有能力处理数据缺失、数据不一致或异常值等数据混乱情况。在开始做数据清洗前,需要对Numpy和Pandas库有基本的理解。...数据清洗 数据清洗名如其意,其过程为标识并修正数据集中不准确的记录,识别数据中不可靠或干扰部分,然后重建或移除这些数据。...数据清洗是数据科学中很少提及的一点,因为它没有训练神经网络或图像识别那么重要,但是数据清洗却扮演着非常重要的角色。没有它,机器学习预测模型将不及我们预期那样有效和精准。...下面我将讨论这些不一致的数据: 数据缺失 列值统一处理 删除数据中不需要的字符串 数据缺失 数据缺失原因? 在填写问卷时,人们往往未填全所有必填信息,或用错数据类型。
实际应用中,在得到原始数据时,经常碰到数据缺失问题,对数据进行加工或清洗就非常有必要了 import numpy as np from numpy import nan import pandas as
读取数据 使用 pd 的 read_sql 读取数据 import pymysql import pandas as pd self.conn = pymysql.connect(host=host,...product_name'], inplace=True) 异常值处理 处理异常值使用 pd 的 replace 方法 df.replace(' ', np.nan, inplace=True) 数据重新写入到...MySQL 数据重新写入 MySQL 使用 pd 的 to_sql 方法 df.to_sql(name=table_name, con=self.conn, if_exists='append', index...create_engine engine = create_engine("mysql+pymysql://user:pass@host:port/db") 2、空值处理的问题 保存在 mysql 中的数据中有空值
1 处理缺失值 (1)过滤缺失值(点此跳转) (2)补全缺失值(点此跳转) 2 数据转换 (1)删除重复值(点此跳转) (2)使用函数或映射进行数据转换(点此跳转) (3)替代值(点此跳转) (4)重命名轴索引...重命名轴索引可以在不生成新的数据的情况下修改轴,一个有用的方法是rename,示例如下: import pandas as pd import numpy as np data = pd.DataFrame...取四次样,每次1000个数 df.describe() #输出描述性信息 假如要找出有值大于3或小于-3的行,可以使用any方法: df[(np.abs(df) > 3).any(1)] 以上就是数据清洗和准备的大致内容...,高效的数据准备工作可以使我们将更多的时间用于数据分析而不是准备数据,从而提升工作效率。...在下一章将会介绍pandas的数据连接和联合等功能。
庆幸的是,Pandas 提供功能强大的类库,不管数据处于什么状态,他可以帮助我们通过清洗数据,排序数据,最后得到清晰明了的数据。...下面我们通过使用 Pandas 提供的功能来清洗“脏”数据。 准备工作 首先,第一次使用 Pandas 之前,我们需要安装 Pandas。...data.rename(columns = {‘title_year’:’release_date’, ‘movie_facebook_likes’:’facebook_likes’}) 保存结果 我们完成数据清洗之后...有很多方式可能造成数据集变“脏”或被破坏: 用户环境的不同、 所使用语言的差异 用户输入的差别 在这里,我介绍了 Python 用 Pandas 清洗数据最一般的方式。...更多关于数据清洗的内容可以关注知乎上的专栏“数据清洗” 知乎数据清洗- Pandas 清洗“脏”数据(一)
数据离散化 数据离散化就是分箱 一把你常用分箱方法是等频分箱或者等宽分箱 一般使用pd.cut或者pd.qcut函数 pandas.cut(x, bins, right=True, labels) x:...数据 bins: 离散化的数目,或者切分的区间 labels: 离散化后各个类别的标签 right: 是否包含区间右边的值 import pandas as pd import numpy as np...import os os.getcwd() 'D:\\Jupyter\\notebook\\Python数据清洗实战\\数据' os.chdir('D:\\Jupyter\\notebook\\Python...数据清洗实战\\数据') df = pd.read_csv('MotorcycleData.csv', encoding='gbk', na_values='Na') def f(x): if
1 处理缺失值 (1) 过滤缺失值(见上一篇文章) (2) 补全缺失值 有时候我们并不是想要过滤缺失值,而是需要补全数据。...插值方法,如果没有其他参数,默认为'ffill' axis 需要填充的轴,默认axis=0 inplace 修改被调用的对象,而不是生成一个备份 limit 用于前向或后向填充时最大的填充范围 2 数据转换...df.drop_duplicates(['k1'], keep = 'last')) #保留最后一个值 -----结果----- k1 k2 4 one 3 6 two 4 (2)使用函数或映射进行数据转换...对于许多数据集,可能希望基于DataFrame中的数组、列或列中的数值进行一些转换,测试数据(data)如下,包含九类肉的名称和价格: 假设要添加一列用于表明每种食物的动物肉类型,映射如下: meat_to_animal
对新建的ipynb文件重命名2.png 3.导入数据并查看数据字段 ?...数据处理1.png 在数据处理过程中,需要多次查看DataFrame的字段,所以定义一个函数。...数据处理4.png 从上图看出DataFrame的行数从26332行变为了25887行。...所以前面的篇幅可以用作思路的参考,最终数据处理只需要复制下面一段代码就可以完成。...数据处理结果图示.png
在进行数据分析和建模过程中,大量时间花费在数据准备上:加载、清洗、转换和重新排列,这样的工作占用了分析师80%以上的时间。本章将讨论用于缺失值、重复值、字符串操作和其他数据转换的工具。...1、处理缺失值 缺失数据在数据分析中很容易出现,在pandas中使用NaN表示缺失值,称NaN为容易检测到的缺失值;同时python内建的None值在对象数组中也会被当做NA处理: import numpy...,并允许根据丢失的数据量确定阈值 fillna 用某些值填充缺失的数据值或使用插值方法,如ffill或bfill isnull 返回表明哪些值是缺失值 notnull 作用域isnull相反 ----...(1)过滤缺失值 有多种过滤缺失值的方法,虽然可以用pandas.isnull手动过滤,但是dropna在过滤缺失值上更为有用,在series上使用dropna,它会返回series中的所有非空数据及其索引值...,下一篇文章将介绍补全缺失值和数据转换的相关内容。
领取专属 10元无门槛券
手把手带您无忧上云