谷歌公布了一项重要研究成果–电影票房预测模型。该模型能够提前一个月预测电影上映首周的票房收入,准确度高达94%。这在业内引起了强烈讨论,不少内人士认为该模型非常适合好莱坞电影公司通过预测票房来及时调整电影营销战略,但同时也有吐槽者暗示谷歌的票房预测模型别有用心,旨在鼓动电影公司购买其搜索引擎广告。那么,孰是孰非,谷歌票房预测模型以及大数据在电影行业的应用是嘘头,还是大有来头,让我们来一探究竟。 谷歌票房预测模型的基础:电影相关的搜索量与票房收入的关联 谷歌的票房预测模型是大数据分析技术在电影行业的一个重要
被大数据分析算法刷屏的各种推荐,刷个抖音,被频繁的推荐可能认识的人,其中就包括分手一年多的前女友;淘宝闲逛,推送的都是你妈妈搜索过的中老年大码女装;微博浑水,你多看了两秒钟“十二星座理想中的另一半”,往下刷的微博几乎都是关于星座的....
本文探讨了大数据分析所面临的10个最重要的隐私风险。这些风险包括隐私泄露、无法匿名化、屏蔽数据可能泄露个人信息、基于解释的不道德行为、大数据分析并非100%准确、歧视、涉及到的个人几乎没有法律保护、大数据可能永远存在、对电子证据发现的影响以及使专利和版权变得无关紧要。在使用大数据分析时,组织应在实际使用分析之前确定相关的隐私和信息安全影响。
github地址:https://github.com/LittleLawson/ChinaTelecom
PPV课大数据 在12月16日举行的第二届中国网络视听大会上,百度提前发布了2014年的部分“大数据”。“视听类”榜单上,“古剑奇谭”、“鹿晗”、“杨幂”、“TFBoys”分别“称霸”各自类别榜单。看
【学术plus】 新添加号内搜索功能! →输入关键词→一键检索您需要的文章。快来试试! 今日荐文 今日荐文的作者为首都经济贸易大学密云分校专家孙远芳,段翠华,中国石油大学(华东) 计算机与通信工程学院专家张培颖。本篇节选自论文《大数据驱动的未来网络:体系架构与应用场景》,发表于《中国电子科学研究院学报》第12卷第5期。本文为论文下半部分。 摘 要:当前网络已经发展了40余年,存在许多问题亟待解决。随着美国产业互联网、德国工业4.0以及“互联网+”等战略的提出,当前的互联网所支撑的方向正在由消费型向生产型转变
在12月16日举行的第二届中国网络视听大会上,百度提前发布了2014年的部分“大数据”。“视听类”榜单上,“古剑奇谭”、“鹿晗”、“杨幂”、“TFBoys”分别“称霸”各自类别榜单。看到这里,或许你觉得跟“90后”、“00后”真的有代沟了,别担心,你喜欢的电影《心花路放》,爱哼的歌曲,《小苹果》,准点收看的综艺节目《奔跑吧,兄弟!》,或者时常打开的“晓松奇谈”都在2014年的各类“大数据峰值”里呢。 随着互联网的发展,“大数据”这个概念已经耳熟能详,但你真的了解它吗?你知道它是怎么被运用,进而影响你的生
如今,只要能谈论点儿大数据就显得很高大上。然而,大数据挖掘、大数据分析、大数据营销等事情仅仅只是个开始。当然,也有很多人直接批判大数据或大数据营销给我们造成隐私威胁。大数据到底是什么?它又有着哪些价值呢?
从SGI的首席科学家John R. Masey在1998年提出大数据概念,到大数据分析技术广泛应用于社会的各个领域,已经走过了17年的时间。现在再也没有企业怀疑大数据分析的力量,并且都在竞相利用大数据来增强自己企业的业务竞争力。但是,即使17年过去,大数据分析行业仍然处于快速发展的初期,每时每刻都在产生新的变化。 从概念到实用、从结构化数据分析到非结构化数据分析,大数据分析技术在不断地进化。虽然国内仍然在关注舆情分析,但是记者注意到,在美国,大数据分析的研究已经进入到了一个全新的阶段,“预测分析”技术成为最
从SGI的首席科学家John R. Masey在1998年提出大数据概念,到大数据分析技术广泛应用于社会的各个领域,已经走过了17年的时间。现在再也没有企业怀疑大数据分析的力量,并且都在竞相利用大数据来增强自己企业的业务竞争力。但是,即使17年过去,大数据分析行业仍然处于快速发展的初期,每时每刻都在产生新的变化。
<数据猿导读> 爱梦科技主要通过大数据技术与娱乐行业结合的方式,做娱乐媒介广告精准匹配、影视投资风险全程控制以及为艺人提供营销决策服务。这个听起来浪漫又极富情怀的大数据公司其实在成立第二年就已实现盈利
小微导读 从SGI的首席科学家John R. Masey在1998年提出大数据概念,到大数据分析技术广泛应用于社会的各个领域,已经走过了17年的时间。现在再也没有企业怀疑大数据分析的力量,并且都在竞
2017年6月22日,由大数据产业联合会主办,清数D-LAB承办的《清华大数据思享会》在学研大厦圆满完成,来自中国电信北京研究院灯塔大数据产品线的产品总监钱兵,在会上分享了中国电信在泛娱乐大数据媒体营
来源:学术plus(caeit-e) 摘 要:当前网络已经发展了40余年,存在许多问题亟待解决。随着美国产业互联网、德国工业4.0以及“互联网+”等战略的提出,当前的互联网所支撑的方向正在由消费型向生产型转变,但是基于TCP/IP的网络体系架构在可扩展性、安全性等方面都无法适应这一转变,因此未来网络受到了全球范围的重视,比较有代表性的工作包括软件定义网络和信息中心网络,另一方面,大数据技术也在各个行业崭露头角,这些新兴的技术都处于发展初期,仍存在许多问题亟待解决。本文将这些新技术的优势加以利用,提出了一种数
大数据文摘作品,欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘二维码。 素材来自:《大数据供应链》 中国人民大学出版社 【成功的诺基山】 2003年,钢铁制造建筑领军企业诺基山(Rocky Mountain) 钢铁公司迫于价格压力不得不关闭其钢管工厂。2005年,由于石油成本提高,潜在的客户、石油钻井公司纷纷涌现,公司需要重新制定策略。需不需要重开钢管工厂?如果要,什么时候重开?是马上开始生产
百度对《黄金时代》的票房预测遭遇滑铁卢近期引发行业热议,不少同仁开始怀疑大数据对于电影业的价值。但在娱乐资本论看来,因为票房预测失灵,就全盘否定大数据并不公允。今年6月,小娱曾写过一篇关于电影大数据的文章,采访中发现,大数据至少在剧本研发、演员筛选、宣发策略制定等方面,依旧有一定的空间。只是,“数据脏”已成为中国大数据行业发展的“原罪”,而且,中国电影行业运行中存在的诸多隐秘逻辑,这势必对大数据的解读提出更高的要求。 中国电影业开始相信大数据了吗? 在电影行业,“大数据”是一个熟悉又
大数据因为其背后蕴含的价值,被《经济学杂志》在2017年誉为“新的石油”,数据导向的工作也成为很多人的向往之一,特别是数据分析。
开题关乎着你后续代码的编写,论文的撰写,选题选的好,答辩、论文、项目都轻松,反之……,
佳讯飞鸿布局物联大数据,拟1.3亿元收购六捷科技30%股权;商业数据分析公司GrowingIO完成新一轮2000万美元A轮融资;易会推出“营销云3.0”,重新定义大数据时代的事件数字营销……以下为您奉
大数据、云计算、智慧城市……近年,一堆和数据有关的词汇被频繁提及,大数据逐渐渗透到大众生活里。企业纷纷宣称自己的大数据能力很强,但网民被推送的“精准广告”常常并非所需而被当做垃圾信息处理;手机上,很多很炫的APP应用吸引用户的同时,用户却无奈的发现自己的通讯,短信,位置信息被对方强行采集。 中国企业的大数据能力究竟如何?大数据研究的前景如何?大数据方便了生活,也带来了隐私和安全风险,其边界在哪里?就国内大数据和统计学行业热点问题,让我们听听北京大学光华管理学院商务统计与经济计量系教授王汉生怎么说。 企业数据
大数据用于商业决策有盲区,“大数据之父”给出新对策。 只要有了大数据,商业决策就能更加准确和理性吗? 牛津大学教授维克托·迈尔-舍恩伯格(Viktor Mayer-Schönberger)是《大数据时
大数据时代,大数据分析行业水涨船高,很多身边的朋友都想学习一下如何进行大数据分析。经常有人问我该怎么选择大数据分析工具。也对,面对市面上那么多大数据分析工具,大家在选择的时候都会懵一下。
软件和服务的大数据分析市场收入预计将从2018年的 42B增长到2027年的 103B,复合年增长率(CAGR)为10.48%。这就是为什么,大数据分析认证是业内最全神贯注的技能之一。 在这个“大数据分析应用领域”文章中,我将带您进入各个行业领域,在这里我将解释大数据分析如何使它们发生革命性变化。
在当今信息时代,大数据已成为了无处不在的存在。从社交媒体上的点赞和分享,到在线购物的记录,再到传感器生成的海量数据,我们的世界充斥着各种各样的数据。这些数据的数量之大,以至于我们开始用“数据大爆炸”来形容这一现象。但这些数据不仅仅是数字的堆积,它们是有价值的资源,因为通过适当的大数据分析,我们可以从中提取出有意义的信息,这不仅改变了商业,也改变了我们的生活方式、医疗保健、科学研究等方方面面。
伯纳德·马尔 畅销书作家、Keynote主讲嘉宾、顶尖商业及数据专家 不知道你能不能感觉到,我们每个人都在创造历史。大数据有着无比强大的力量,能够给各行各业乃至整个社会带来巨大变革。 从普通人生活的日常琐事,到治疗癌症的方法选择,再到应对人类社会面临的威胁,大数据将改变每个行业,改变我们生活中的方方面面。现在我们可以很肯定的说,大数据已经在悄然改变我们的生活了。 有人认为大数据的流行不过是昙花一现,但是他们错了。大数据不会改变,也不会消失,并且大数据的应用也会继续发展。我们现在称之为“大数据”的东西,几年
年底各个平台都在做盛典,不过,能吸引众多主流一线明星集体前往的盛典不多,说白了,不是每个平台都有这样的影响力和号召力。12月17日,今日头条今年举办“我是头条·2017今日头条年度盛典”就证明了自己已成为娱乐行业的重量级平台。 吴刚和吴京谁更红?数据会说话 行业里面,今日头条年度盛典这样的活动并不少见。12月18日,花椒之夜在北京举办,明年1月陌陌惊喜之夜则将在上海举办,此前还有微博V影响力峰会,这些活动都少不了明星参加。不过,今日头条不是从粉丝数等维度给明星评奖,而是通过用户大数据而得出的榜单。 看到今日
当2002年的电影《少数派报告》上映的时候, 预测犯罪还只是科幻小说里的情节而已。 对于犯罪分子来说, 警察对犯罪的预测性分析还远远不足以担心。 到了2014年的今天, 这些曾经的科幻小说的情节逐渐变得现实起来了。 尽管还不能到达《少数派报告》那么神奇。 在IT经理网之前的报道“警务2.0:用大数据预防犯罪”一文中,我们了解到社会化分析和预测型分析将会是大数据警务应用的两个热门领域,。如今越来越多的案例表明犯罪预防领域的预测型分析能够显著降低犯罪率,例如洛杉矶警察局已经能够利用大
在中国,从2013年大数据元年始,上至国家总理,下至普通平民,大数据的词汇已经深入人心,大家都觉得大数据是个好事,但基本上都是叫好不叫坐,尤其是在传统企业中。现今的中国,大数据在互联网、电商、金融等行业都得到了很好的发展应用,而在传统企业举步维艰,究其原因,一般都有如下几点问题: 一是数据量太少的困扰。一般传统的大中型企业都已经进行了信息化的过程,也有了企业的完整的ERP系统,数据都已经采集到结构化数据库中,但这些结构化数据的量级和大数据PB级的量级相比,差之甚远。面对这种小量的数据,企业的DBA的解决方案
数据分析的概念对于大家来说早已司空见惯,数据分析技能目前也已成为求职者和工作场所人员的一个亮点。对于面对自身累积的庞大财务数据,业务数据和运营数据,流量数据及其他数据资产的公司,公司如何利用大数据并进行大数据分析?我们从以下几个方面来了解一下。
大数据文摘翻译作品 作者:tim-wu 翻译:魏子敏,于婷婷 校对:Linda Bi 如需转载,后台留言申请授权 欢迎熟悉外语(含各种“小语种”)的朋友,加入大数据文摘翻译志愿者团
1.前端: 如html/css/js等前端语言构建web页面,也可以通过如vue等相关技术进行前端工程化来编写页面
点击上方 “蓝色字” 可关注我们! 营销是一门学问吗?当然是,从人类有交易活动开始,营销便一直存在,且随着时代的变化而不断产生新的形式。进入大数据时代,市场营销也随之而慢慢进化。 在某些方面,当前的市场营销行业也存在着前所未有的潜力,这便是大数据时代市场营销专业就业方向的新趋势。很多人表示,将传统的市场营销智慧与大数据的巨大威力相结合,可能会在定性分析和定量分析方面产生巨大的优势。但是要做到这一点,首先还有很多工作要做。 沃顿商学院运营与信息管理学教授桑德拉·希尔(shawndra hill)表示:“这是一
原文链接:https://mp.weixin.qq.com/s/kCDYOInF8KjHstIMAWSljA
hi,大家好~我是shadow,一枚设计师/全栈工程师/算法研究员,目前主要研究方向是人工智能写作和人工智能设计,当然偶尔也会跨界到人工智能艺术及其他各种AI产品。
Crowds®系列研究中的一部分。这个系列报告将大数据分析定义为最终用户能够访问、分析和管理Hadoop生态体系
程序员作为曾经备受羡慕的高薪群体,如今也面临着“保饭碗”的巨大压力,许多想要入坑的新人也处于观望态势。
如果大数据是一块蛋糕,那么大数据分析工具就是切蛋糕的刀叉。人们都期待着能用“刀叉”从大数据中挖出自己想要的“价值”,因此大数据分析工具被人们寄予厚望。而云计算技术的兴起似乎又给大数据注入了新的推进剂,那么大数据和云计算的结合又会发生怎样的化学反应?对大数据分析工具的发展又有怎样的影响?
我们先谈谈大数据是什么样的数据。 IBM有一个著名的5V大数据理论:Volume(大量)、Velocity(高速)、Variety(多样性)、Value(价值)以及Veracity(真实性)。简而言之,达到大规模的数据,极快的流通速度,数据类型和来源的多样性,低值密度以及可以反映事物真实性的数据就是大数据。那么大数据分析和传统数据分析之间有什么区别?亿信华辰小编给大家介绍一下。
随着信息时代的到来,海量的数据不断涌现,这就引发了一个新的挑战:如何从这些海量数据中提取有用的信息和洞察,以便做出更明智的决策。大数据分析作为应对这一挑战的重要手段,正日益受到关注。而在大数据分析领域,云计算技术发挥着不可替代的作用。本文将探讨云计算在大数据分析中的应用、优势以及对未来发展的影响,同时通过代码示例来帮助读者更好地理解这一重要主题。
随着科学,技术和经济的进步,人类已经进入了信息化和大数据时代。人类生活的世界每天都在爆炸性地生成大量数据,并且面临着诸如宇宙繁星般的大量数据。如何收集,清理,整合,存储,计算,建模,训练,显示和分析数据,如挖掘黄金一样的找到有价值的数据并使用它,一直是许多公司困扰的问题。因此,为了解决这个问题并更好地分析和开发数据,大数据分析工具应运而生。
虽然大数据分析工具提供的功能并非全新,但有三大关键因素已经降低大数据分析的门槛,可以让更多的企业考虑采用大数据技术。 成本 早期的产品通常标价很高,并提供昂贵的集成与部署售后服务。现在的工具套件可选择性多,价格模式也更容易令人接受。 简易 越来越多的工具是面向非专家级别的用户设计的。早期的产品使用者是统计师和数据家,他们不但建立模型,而且还理解这些模型具体如何工作。现在的产品不要求用户要有高级科学学历才能够理解模型结果中的业务优势。 性能 可扩展平台可以满足大数据分析对数据量和计算的需求。现在有很多开源平台
世界卫生组织25日发布的报告中说,肆虐西非地区的埃博拉疫情已致死将近5000人。如果能够提前预知病毒的传播和暴发,状况是否会有所不同?美国一个卫生机构通过分析互联网数据,试图提前定位可能的埃博拉病例,了解这一疾病的蔓延趋势。一些研究人员说,这类大数据分析可以有效抑制流行病传播。 极具潜力 “健康地图”现今主要使用这种大数据分析法探测和监控疫情。一些专家说,这种分析法中的预测性分析技术的用途可以更大。如果营销人员能够使用这类技术把分类广告信息投放潜在用户,而且可以依据用户喜好向他们推荐音乐和
很多人想知道究竟是什么大数据分析。然而网络中对大数据分析的定义却让人看了以后更加糊涂,例如下面是百度百科的解释:
近几年的大数据,确实在行业当中得到越来越多的重视,越来越多的企业开始成立数据业务部门,针对企业不断累积起来的数据资产,进行价值挖掘和应用。对于企业而言,大数据相关人才的引进,有大数据开发,也有数据分析,今天我们就来讲讲大数据开发岗和分析岗两者的区别。
大数据搭着信息时代的快车来到了我们的面前,数据的价值逐渐为人们所重视,同时也让数据分析师的身价倍增。而随着大数据分析工具等大数据应用技术的出现,未来的数据分析师又将遇到怎样的挑战和机遇呢? 工具抢了人
根据IDC 监测,人类产生的数据量正在呈指数级增长,大约每两年翻一番,这个速度在2020 年之前会继续保持下去。这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。 一、大数据应用现状 1、数据量在不断增加,且数据结构不断复杂。 根据IDC 监测,人类产生的数据量正在呈指数级增长,大约每两年翻一番,这个速度在2020 年之前会继续保持下去。这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。于此同时,大量新数据源的出现则导致了非结构化、半结构化数据爆发式的增长。 这些由我们创造的信息背后
因为大数据爆发,因此出现了大数据开发、大数据分析这两大主流的工作方向,目前这两个方向是很热门,不少人已经在开始转型往这两个方向发展,相较而言,转向大数据分析的人才更多一点,而同时也有不少人在观望中,这边科多大数据收集了十个为什么要学习大数据分析的十个理由。
对于海量数据价值的挖掘,需要通过大数据分析来实现,而这些数据由于具有不同于传统数据的新特征,传统的数据分析技术和工具都不能高效的进行处理,因而才有了基于大数据技术平台进行大数据分析的需求。今天,我们以Hadoop框架为例,来看几个大数据分析项目实例。
领取专属 10元无门槛券
手把手带您无忧上云