首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    车品觉:不懂商业就别谈数据分析

    目前有些人关心行为数据,也有些人关心商业数据,但较少人把行为数据和商业数据联系起来看。大家往往只单纯看某一端数据。但是看数据走火入魔的人会明白,每个数据,就像散布在黑夜里的星星,它们彼此之间布满了关系网,只要轻轻按一下其中一个数据,就会驱动另外一些数据的变化。 前一段日子见到一位数据发烧友,我们俩有一致的观点:电子商务发展速度越来越快,这个行业的趋势变化也越来越快;对于电子商务公司老板来说,想要自己走在趋势前面,必然要学会数据驱动。 庆幸的是,今年,电子商务业者对数据分析已经重视起来了,就连由夫妻店起家的淘

    07

    质检总局、发改委:拟建大数据中心遏制电商售假

    1月17日,一位接近国家质检总局的人士向《每日经济新闻》记者透露,国家发改委与国家质检总局将共建“全国电子商务质量大数据应用中心”,并落户于杭州,这个中心有望在杭州云栖小镇进行建设。   上述人士表示,为了支持这个电商质量大数据中心,杭州市政府有意配套建设4张网,即共享网、打假维权网、标准网、检测协作网,此举有望进一步遏制愈来愈烈的网络售假,通过数据分析来提升相关职能部门的执法水平。   “多地质检部门根据本部门的特点拟定供给侧改革的建议和意见,目前较为普遍的网络售假从侧面反映出国内供给结构亟待优化,电

    06

    无细分,毋宁死:电子商务数据分析三年工作总结

    08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需要感谢的人很多,他们无私的教给了我很多东西。 就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员

    07

    达观数据科技助力电商在大数据的海洋里破浪前行

    曾经有一个笑话“隔着互联网,没有人知道对面是不是一条狗。”如今再看这个笑话却已是有几分老古董的味道,互联网不再是蒙住人们双眼的纱布,反而透过这个介质我们的生活习惯,兴趣偏好等等都会展露无遗。可以说,“隔着互联网,所有人都知道对面是条哈士奇。”这意味着随着信息技术的发展,数字化的虚拟世界逐步和现实世界进一步融合,虚拟世界的影响力会不断地渗透到现实,这样的未来有点像电影《黑客帝国》的场景,每个人都是由0,1这两个数字拟合的具象物,不论我们在网络上每一次购买,收藏,评论,还是在小说网站的搜索,放入书架都会在我们的

    07

    【解析】数据分析之如何看懂数据

    对于数据,有一个共识就要会看数据,通过合理及透彻的分析来驱动产品,运营及市场策略的调整。但是这些知识看数据的中级阶段,高级阶段则是通过庞大的多维度的数据分析,能够预测到未来一个季度,半年甚至一年的业务走势,当然预测可以有一定的偏差在里面。还有的就是如果要进入到新业务的扩张上,那么能够计算出未来的一定周期内需要有多大的资金投入量,人员投入量,市场及运营资源投入等达到一个什么样的规模,或者说反推,我想达到这样的规模那么需要多少投入,多长时间。这个是最高阶段,在一般情况下也许根本不会触及到这个方面,少部分能

    07

    精益数据分析:对商业模式、创业阶段、数据指标、数据测试方法的数据分析

    随着“数据驱动产品设计”的理念被越来越多的公司所认可,越来越多的人认识到数据分析的重要性,数据分析也成为产品经理的一项必备技能。但是到我们在进行数据分析的过程中,总会存在一些问题,比如,我该关注哪些指标?指标太多我该如何通过这些指标获取我想要的结论?如何解读这些指标以便能够达到“数据驱动产品设计”?本文结合埃里克·莱斯的《精益数据分析》这本书,结合自我思考,阐述精益数据分析方法,后续会给出案例进行方法的实践。 1、为什么要进行数据分析? 彼得德鲁克有句名言:if you can't measure it,

    05

    干货|数据分析之如何用数据?

    光知道怎么看数据,还是不成,你得熟悉这些数据拿到手上之后怎么去用它,怎么让数据显示出来它本身的威力来。最后总结下来有这么几个部分。 第一个部分,是看历史数据,发现规律。 以社区中的活动和电商中的促销为例,这些都是常见的活动,活动做得好的话有意想不到的效果。在做这样的活动,最好是拿到前一个月或者两个月的历史数据。对电商来说,从这里面要去分析各个品类的销售情况,哪个品类销量最大,哪个品类销量最小,每月或者每周的平均增长率和复合增长率是多少。通过原始数据把上面的这些指标分析出来之后,就可以看到哪些品类是优势品类,

    09
    领券