首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python中最常用的 14 种数据可视化类型的概念与代码

本文总结介绍了多种可视化图及其适合使用场景,并同时展示使用了常用的绘图包(plotly、 seaborn 和 matplotlib )绘制这些图的代码。 条形图 条形图是用矩形条显示分类数据的图形。...这些条的高度或长度与它们所代表的值成正比。条形可以是垂直的或水平的。垂直条形图有时也称为柱形图。 以下是按年指示加拿大人口的条形图。 条形图适合应用到分类数据对比,横置时也称条形图。...注意: 条形图数据条数不宜超过12条;条形图数据条数不宜超过30条。...数据的中位数由一条线标记。还有两条额外的线,称为须线。 第 25 个百分位标记称为“Q1”(代表数据的第一季度)。第 75 个百分点是 Q3。...中位数(小提琴图上的一个白点) 四分位数范围(小提琴中心的黑色条)。 较低/较高的相邻值(黑色条形图)--分别定义为第一四分位数-1.5 IQR和第三四分位数+1.5 IQR。

9.6K20

Python 绘制惊艳的瀑布图

它们从水平轴开始,由一系列与负面或正面评论相关的浮动列连接。有时,条形图与图表中的线条相连。 瀑布图使用条件 让我们举个例子来了解何时何地使用瀑布图,因为制作瀑布图不是什么大问题。...该表按顺序显示了值的重要性,但读取这些值非常困难。相反,我们可以很容易地看到,按x轴正方向的连贯性顺序显示数据,并且黄色条显示减量,红色条显示增量。...x: x轴上的值 y: y轴上的值 text: 将要在图表上显示的值 textposition: 我们可以把文本放在图表的柱状图内或柱状图上方 为何更加优雅的使用图表,我们可以为图表的条形及其连接线设置颜色...图表的参数 connector: 为连接器线提供颜色 increasing: 给递增的条赋予颜色 decreasing: 给递减的条上色 其实,上面已经完成了瀑布图的绘制,但若想他更加惊艳,可以进一步设置图表...如果仔细查看图表,默认情况下,具有正值的条形为绿色,负值为红色,总值为蓝色。

2.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    关于Python可视化Dash工具

    data_frame由三元坐标中的符号标记表示; 5、scatter_mapbox:地图散点图 在Mapbox散点图中,每一行data_frame都由Mapbox地图上的符号标记表示; 6、scatter_geo...连续折线之间的区域被填充; 14、bar:条形图 在条形图中,每行data_frame表示为矩形标记; 15、timeline:时间轴图 在时间轴图中,每一行数据框都表示为日期类型x轴上的矩形标记...dimensions; 29、choropleth:等高(值)区域地图 在等值区域图中,每行data_frame由地图上的彩色区域标记表示; 30、choropleth_mapbox:在Mapbox...choropleth地图中,每一行的数据由Mapbox地图上的一个彩色区域表示。...)的2D分布 z; 33、density_mapbox:Mapbox密度图 在Mapbox密度图中,每一行数据帧都会影响地图上相应点周围区域的颜色强度 plotly.graph_objects

    3.2K10

    如何在 Python 中使用 plotly 创建人口金字塔?

    人口金字塔是人口年龄和性别分布的图形表示。它由两个背靠背的条形图组成,一个显示男性的分布,另一个显示女性在不同年龄组的分布。...我们可以使用 px.bar() 函数来创建构成人口金字塔的两个背靠背条形图。 请考虑下面显示的代码。...x 参数指定要用于条形长度的变量,条形长度是每个年龄组中的人数。 y 参数指定要用于条形高度的变量,即年龄组。 方向参数指定条形应该是水平的。 颜色参数指定条形应按性别着色。...我们可以使用 Plotly Graph 对象来创建人口金字塔,方法是创建两条条形迹线,一条用于男性,另一条用于女性,然后将它们组合成一个图形。 请考虑下面显示的代码。...将为绘图创建一个布局,其中包含 x 轴和 y 轴的标题和标签。 使用 go 创建图形。图法与两条迹线和布局。 最后,使用 fig.show() 方法显示绘图。

    41610

    手把手教你用plotly绘制excel中常见的16种图表(上)

    excel插入图表 今天,我们介绍第一部分8类图表的绘制。公众号后台回复0306即可领取全部演示代码ipynb文件。 目录: 0. 准备工作 1. 柱状图 2. 条形图 3. 折线图 4....条形图 条形图其实就是柱状图转个90度,横着显示呗。所以,本质上是一样的,唯一的区别:在 Bar 函数中设置orientation='h',其余参数与柱状图相同。...# 在plotly绘图中,条形图与柱状图唯一的区别:在 Bar 函数中设置orientation='h',其余参数与柱状图相同 import plotly.express as px data = px.data.gapminder...自定义每个色块颜色 在饼图上显示数据标签: # 在饼图上显示数据标签 import plotly.express as px df = px.data.gapminder().query("year...在饼图上显示数据标签 圆环图: 圆环图是指饼图中间一定半径的圆部分为空白,设置参数hole=int即可(0-1)。

    3.9K20

    独家 | 别在Python中用Matplotlib和Seaborn作图了,亲,试试这个

    是时候升级你的可视化游戏了。 图片源: Unsplash,由Isaac Smith上传 数据可视化是人脑有效理解各种信息的最舒适、最直观的方式。...静态绘图的一些限制是,我们无法放大绘图中有趣的部分,也无法将鼠标悬停在绘图上以查看特定信息。 于是,plotly包闪亮登场了!...印度和中国的人口 现在,我们要创建一个条形图,来展示印度和中国的人口随时间的变化。使用 plotly graph 对象模块创建绘图,分成2个步骤: 1. 设置图形函数,我们将在其中设置数据参数。...使用 update_layout 函数设置图表的标题、x 轴和 y 轴的文本。...世界发展随时间的变化:动画展示 利用气泡图,我们可以在 2D 图上展示 3 个维度(x 轴、y 轴和气泡大小)。

    1.8K20

    60种常用可视化图表的使用场景——(下)

    条形通常从中心点开始向外延伸,但也可以别处为起点以显示数值范围(如跨度图)。此外,条形也可以如堆叠式条形图般堆叠起来。 推荐的制作工具有:jChartFX、Bokeh。...此外,较大的地区会比较小区域更加显眼,影响读者对数值的感知。 绘制地区分布图时的常见错误:对原始数据值(例如人口)进行运算,而不是使用归一化值(例:计算每平方公里的人口)。...推荐的制作工具有:Amcharts、AnyChart、ByteMuse.com、CanvasJS、jChartFX、Plotly、vaadin、Zing Chart。...中间的黑色粗条表示四分位数范围,从其延伸的幼细黑线代表 95% 置信区间,而白点则为中位数。 推荐的制作工具有:The R Graph Gallery、seaborn、z-m-k's Blocks。...60、词云图 词云图 (Word Cloud) 也称为「标签云图」、「词云」等,每个词的大小与其出现频率成正比,以此显示不同单词在给定文本中的出现频率,然后将所有的字词排在一起,形成云状图案。

    16310

    可视化图表样式使用大全

    条形图 (Bar Chart) 也称为「棒形图」或「柱形图」,采用水平或垂直条形(柱形图)来比较不同类别的离散数值。 图表其中一条轴代表要比较的具体类别,另一条则用作离散数值的标尺。...比例面积图通常使用正方形或圆形,常见技术错误是,使用长度来确定形状大小,而非计算形状中的空间面积,导致数值出现指数级的增长和减少。...推荐的制作工具有:Arpit Narechania's Block。 径向条形图 ? 径向条形图是在极坐标系上绘制的条形图。 虽然看起来很美观,但径向条形图上条形的长度可能会被人误解。...此外,较大的地区会比较小区域更加显眼,影响读者对数值的感知。 绘制地区分布图时的常见错误:对原始数据值(例如人口)进行运算,而不是使用归一化值(例:计算每平方公里的人口)。...字云图 (Word Cloud) 也称为「标签云图」、「词云」等,每个此的大小与其出现频率成正比,以此显示不同单词在给定文本中的出现频率,然后将所有的字词排在一起,形成云状图案。

    9.4K10

    常用60类图表使用场景、制作工具推荐!

    条形图 条形图 (Bar Chart) 也称为「棒形图」或「柱形图」,采用水平或垂直条形(柱形图)来比较不同类别的离散数值。 图表其中一条轴代表要比较的具体类别,另一条则用作离散数值的标尺。...比例面积图通常使用正方形或圆形,常见技术错误是,使用长度来确定形状大小,而非计算形状中的空间面积,导致数值出现指数级的增长和减少。...推荐的制作工具有:Arpit Narechania's Block。 径向条形图 径向条形图是在极坐标系上绘制的条形图。 虽然看起来很美观,但径向条形图上条形的长度可能会被人误解。...此外,较大的地区会比较小区域更加显眼,影响读者对数值的感知。 绘制地区分布图时的常见错误:对原始数据值(例如人口)进行运算,而不是使用归一化值(例:计算每平方公里的人口)。...字云图 字云图 (Word Cloud) 也称为「标签云图」、「词云」等,每个此的大小与其出现频率成正比,以此显示不同单词在给定文本中的出现频率,然后将所有的字词排在一起,形成云状图案。

    8.9K20

    60 种常用可视化图表,该怎么用?

    条形图 条形图 (Bar Chart) 也称为「棒形图」或「柱形图」,采用水平或垂直条形(柱形图)来比较不同类别的离散数值。 图表其中一条轴代表要比较的具体类别,另一条则用作离散数值的标尺。...比例面积图通常使用正方形或圆形,常见技术错误是,使用长度来确定形状大小,而非计算形状中的空间面积,导致数值出现指数级的增长和减少。...推荐的制作工具有:Arpit Narechania's Block。 径向条形图 径向条形图是在极坐标系上绘制的条形图。 虽然看起来很美观,但径向条形图上条形的长度可能会被人误解。...此外,较大的地区会比较小区域更加显眼,影响读者对数值的感知。 绘制地区分布图时的常见错误:对原始数据值(例如人口)进行运算,而不是使用归一化值(例:计算每平方公里的人口)。...字云图 字云图 (Word Cloud) 也称为「标签云图」、「词云」等,每个此的大小与其出现频率成正比,以此显示不同单词在给定文本中的出现频率,然后将所有的字词排在一起,形成云状图案。

    9K10

    Python|Plotly数据可视化(代码+应用场景)

    条形图用于比较不同数据之间的差异,条形图的宽度表示数值的大小,可以对单一的变量或者多组变量进行比较。...# 实现简单的条形图 import plotly.express as px # orientation='h' 用户表示绘制条形图 fig = px.bar(data, x='score', y='...='h' : 用户表示绘制条形图 barmode='group' : 按照标签y和颜色color进行聚合,每个“颜色”单独一个条图 text_auto=True : 显示数据标签 ''' fig =...() # 实现多维度比较条形图 import plotly.express as px ''' barmode='group' : 按照标签y和颜色color进行聚合,每个“颜色”单独一个条图 ''...textposition:设置图内文本位置 import plotly.graph_objects as go fig = go.Figure( go.Waterfall(

    3.1K20

    安利个一行代码的Python可视化神器!

    学过Python数据分析的朋友都知道,在可视化的工具中,有很多优秀的三方库,比如matplotlib,seaborn,plotly,Boken,pyecharts等等。...虽然做出的效果非常的炫酷,比如plotly,但是每一次都需要写很长的代码,一是麻烦,二是不便于维护。 我觉得在数据的分析阶段,更多的时间应该放在分析上,维度选择、拆解合并,业务理解和判断。...如果我们只生成随机数,它是这样子的,默认生成100行的随机分布的数据,列数由自己选定。...histogram条形图 df=pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd']) df.iplot(kind='bar'...df.iplot(hspan=[(-1,1),(2,5)]) 又或者是竖条的区域,可以用vspan类型。

    45630

    推荐:这才是你寻寻觅觅想要的 Python 可视化神器

    如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等: ? 这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点.........可以通过设置 animation_frame="year" (以及 animation_group ="country" 来标识哪些圆与控制条中的年份匹配)来设置动画。...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。条形图(Bar)有二维笛卡尔和极坐标风格。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:你整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等

    5K10

    强烈推荐一款Python可视化神器!

    如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等: ? 这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点.........可以通过设置 animation_frame=“year” (以及 animation_group =“country” 来标识哪些圆与控制条中的年份匹配)来设置动画。...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等

    4.4K30

    这才是你寻寻觅觅想要的 Python 可视化神器

    如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等: ? 这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点.........可以通过设置 animation_frame=“year” (以及 animation_group =“country” 来标识哪些圆与控制条中的年份匹配)来设置动画。...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等

    3.7K20

    这才是你寻寻觅觅想要的 Python 可视化神器!

    如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等: ? 这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点.........可以通过设置 animation_frame=“year” (以及 animation_group =“country” 来标识哪些圆与控制条中的年份匹配)来设置动画。...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等

    4.2K21

    来瞧瞧这些炫酷的百分比可视化新图形(附代码实现)⛵

    顾名思义,哑铃图由两个用直线统一的圆形图形组成。 在下面的示例中我们将 X 轴范围设置为 0 到 100% 以显示煤炭产量的百分比。...环绕气泡图上面的罗列气泡图非常占空间,我们可以把气泡圈圈以不同的方式排布,以节省空间,比如环绕气泡图import circlify# 气泡的位置分布circles = circlify.circlify...,大家对进度条有没有印象,它对于显示占比情况也是非常有效的。...图片下面我们使用类似的呈现手法,使用 Plotly 工具库构建条形图来显示占比,而且我们构建的图示是交互式的,大家的鼠标悬停在条形上时会显示相应的信息。...不过大家稍微注意一下,这种堆叠的结构的一个可能问题是,很小占比的国家,可能就显示不太清楚了,堆叠条形图的代码示例如下:import plotly.express as pxfig = px.bar(df_coal

    4.2K72
    领券