首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

由一组节点导出的图子图的提取算法?

由一组节点导出的图子图的提取算法是指从一个图中提取出一个子图的算法。子图是原图中的一部分,由一组节点和它们之间的边组成。子图提取算法可以根据特定的条件或规则,从原图中选择一部分节点和边,形成一个新的子图。

子图提取算法可以用于各种应用场景,例如社交网络分析、图像处理、生物信息学等领域。在社交网络分析中,可以使用子图提取算法来识别社区结构或关键节点。在图像处理中,可以使用子图提取算法来提取感兴趣的图像区域或对象。在生物信息学中,可以使用子图提取算法来分析基因调控网络或蛋白质相互作用网络。

腾讯云提供了一系列与图计算相关的产品和服务,可以支持子图提取算法的实现和应用。其中,腾讯云图数据库TGraph是一种高性能、高可靠性的分布式图数据库,可以存储和处理大规模图数据,并提供了灵活的图查询和分析能力。您可以通过腾讯云图数据库TGraph来实现子图提取算法,并进行相关的图计算任务。

更多关于腾讯云图数据库TGraph的信息,请参考以下链接:

请注意,以上答案仅供参考,具体的子图提取算法和相关产品选择应根据实际需求和情况进行评估和决策。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

基于分解和重组的分子图的生成方法

今天为大家介绍的是来自Masatsugu Yamada 和 Mahito Sugiyama的一篇关于分子生成的论文。在药物发现和材料设计中,设计具有所需化学性质的分子结构是一项重要任务。然而,由于候选分子空间的组合爆炸,找到具有优化所需性质的分子仍然是一项具有挑战性的任务。在这里,作者提出了一种全新的基于分解和重组的方法,该方法不包括任何在隐藏空间中的优化,并且生成过程具有高度的可解释性。该方法是一个两步过程:在第一步的分解阶段,对分子数据库应用频繁子图挖掘,以收集较小规模的子图作为分子的构建模块。在第二步的重组阶段,通过强化学习引导搜索理想的构建模块,并将它们组合起来生成新的分子。实验证明,作者方法不仅可以在惩罚性log P和药物相似度这两个标准指标下找到更好的分子,还可以生成显示有效中间分子的药物分子。

01
  • Bioinformatics丨GraphDTA用图神经网络预测药物靶点的结合亲和力

    今天给大家介绍迪肯大学Thin Nguyen教授等人发表在Bioinformatics上的一篇文章 “GraphDTA: predicting drug–target binding affinity with graph neural networks” 。药物再利用可以避免昂贵和漫长的药物开发过程,估计新药物-靶标对相互作用强度的计算模型可加快药物的再利用,然而,以往的模型均是将药物表示为字符串,但这不是分子表示的合理方式,所以作者提出了一种新的GraphDTA模型,将药物表示为图,并使用图神经网络预测药物与靶点的亲和力。结果表明,图神经网络不仅比非深度学习模型更能预测药物靶点的亲和性,而且比其他深度学习方法更有效。

    02

    Acta Pharm. Sin. B | MF-SuP-pKa: 一种基于多精度学习和子图池化的通用pKa预测模型

    本文介绍一篇来自浙江大学侯廷军教授和谢昌谕教授课题组、中南大学曹东升教授课题组、碳硅智慧和腾讯量子实验室联合发表在Acta Pharmaceutica Sinica B的论文《MF-SuP-pKa: Multi-fidelity modeling with subgraph pooling mechanism for pKa prediction》。该论文提出了一种将化学领域知识和图神经网络算法相结合的通用pKa预测模型MF-SuP-pKa。作者采用子图池化(subgraph pooling, SuP)算法提高模型对分子局部和全局信息的表征能力;利用解离反应的可逆性进行数据增强(data augmentation, DA),将模型适用范围拓展至带电分子;此外,采用多精度学习(Multi-fidelity learning,MFL)的训练策略充分利用高-低精度数据集,有效提高了模型的泛化能力。实验结果表明,MF-SuP-pKa在微观pKa(micro-pKa)和宏观pKa(macro-pKa)的预测中均取得了最优性能,与现有的开源模型相比适用范围更广,使得多步电离预测成为可能。

    02

    CELL SYST|多目标神经网络框架预测化合物-蛋白相互作用和亲和力

    这次给大家介绍清华大学交叉信息研究院的曾坚阳教授课题组在Cell Systems上发表的论文“MONN: A Multi-objective Neural Network for Predicting Compound-Protein Interactions and Affinities”。分析化合物与蛋白质的相互作用 (Compound-Protein Interactions ,CPIs)在药物研发过程中起着至关重要的作用,迅速准确地预测作用位点和其间的亲和力有利于高效的药物研发。基于此问题,曾坚阳教授课题组引入深度学习,提出了一种预测化合物-蛋白相互作用和亲和力的多目标神经网络-MONN。作者在方法中引入了(i)捕获全局特征的超级节点、(ii)预测亲和力的GRU模块(Gate Recurrent Unit,门循环单元模型)、(iii)预测化合物-蛋白结合位点和判断其间的亲和力指标的多目标共享特征结构,使得其模型具有比现有模型更好的特征可解释性,有效捕捉了化合物与蛋白质的内在特征与联系,实现精确判断分子间的相互作用和亲和力。

    02

    Bioinformatics丨SumGNN:基于高效知识图总结的多类型药物相互作用预测

    今天为大家介绍的是剑桥大学CaoXiao等人发表在Bioinformatics上的文章“SumGNN: 基于高效知识图总结的多类型药物相互作用预测”。由于药物-药物相互作用(DDI)数据集和大型生物医学知识图(KGs)的不断增加,使用机器学习模型准确检测不良的DDI成为可能。然而,如何有效地利用生物医学大噪声KGs进行DDI检测仍是一个有待解决的问题。此外,以往的研究多集中于二值DDI预测,而多型DDI的药理作用预测更有意义,但任务更艰巨。为了填补空白,作者提出了一种新的方法SumGNN: 知识摘要图神经网络。这个网络是通过子图提取模块实现的,该子图提取模块可以有效地锚定KG中的相关子图,从而在子图中生成推理路径,以及多通道知识和数据集成模块,该模块利用大量外部生物医学知识,显著改善了多类型DDI的预测。SumGNN比最佳模型的性能高出5.54%,在低数据关系类型中性能提高尤其显著。此外,SumGNN通过为每个预测生成的推理路径提供可解释的预测。

    02

    基于化学元素知识图的分子对比学习

    本文介绍一篇来自浙江大学计算机科学系、杭州创新中心、杭州西湖生命科学与生物医学实验室等联合发表的文章。该文章构建了一个化学元素知识图(KG)来总结元素之间的微观联系,并提出了一个用于分子表征学习的知识增强对比学习(KCL)框架。KCL由三个模块组成。第一个模块是知识引导图增强,对原有的基于化学元素KG的分子图进行扩充。第二个模块是知识感知图表示,对原始分子图使用通用图编码器来提取分子的表示,并使用知识感知消息传递神经网络(Knowledge-aware Message Passing Neural Network, KMPNN)对增强分子图中的复杂信息进行编码。最后一个模块是一个对比目标,以最大化分子图的这两种视图之间的一致性。

    05

    J. Med. Chem. | 用图形注意机制推进药物发现分子表征的边界

    今天给大家介绍的是上海科技大学免疫化学研究所蒋华良院士团队在Journal of Medicinal Chemistry上发表了一篇名为“Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism”的文章。寻找具有良好药理、毒理学和药代动力学特性的化学物质对药物发现来说仍然是一个巨大的挑战。深度学习为药物发现领域提供了强大的工具来建立适合不断增长的数据量的预测模型,但这些神经网络学习的内容与人类能够理解的内容之间的差距正在扩大。此外,这种差距可能会引发不信任,限制深度学习在实践中的应用。在此,作者在文章中介绍了一种新的使用图注意力机制来学习药物发现相关数据集的图神经网络结构——Attentive FP来进行分子表示。通过实验证明,Attentive FP模型不仅在各种数据集上达到了最高水准的预测性能,而且它学习到的是可解释的。通过特征可视化表明,Attentive FP通过从特定任务中学习非局部分子内的交互帮助研究人员发现超出人们预期的潜在的化学信息。

    02

    图论方法在大脑网络中的应用

    网络神经科学是一个蓬勃发展且迅速扩展的领域。从分子到行为尺度的大脑网络的数据的规模和复杂性都在不断增加。这些数据的发展对建模和分析大脑网络数据的合适工具和方法具有强烈的需求,例如由图论提供的工具和方法。本文概述了一些最常用的,且在神经生物学上富有洞察力的图度量方法和技术。其中,网络社区或模块化的检测,以及对促进通信和信号传输的中心节点的识别尤为突出。在这个领域,一些新兴的趋势是生成模型、动态(时变)和多层网络的日益广泛使用,以及代数拓扑的应用。总的来说,图论方法对于理解大脑网络的结构、发展和进化至关重要。本文发表于Dialogues Clin Neurosci杂志。。

    01
    领券