首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python图像处理

    Python图像处理 最近在做一件比较 evil 的事情——验证码识别,以此来学习一些新的技能。...因为我是初学,对图像处理方面就不太了解了,欲要利吾事,必先利吾器,既然只是一下实验,那用 Python 来作原型开发再好不过了。...在 Python 中,比较常用的图像处理库是 PIL(Python Image Library),当前版本是 1.1.6 ,用起来非常方便。...在这里,我主要是介绍一下图像识别时可能会用到的一些 PIL 提供的功能,比如图像增强、还有滤波之类的。最后给出使用 Python 图像处理与识别的优势与劣势。...增强亮度,factor取值[0,4],步进0.5 图 7 Contrast 增强对比度, factor 取值 [0,4],步进0.5 图 8 Sharpness

    1.5K20

    黑客的思维 中国最好的网络安全产品

    说起这段经历,范渊说:“我们是黑客的思路想问题,白客的思维解决问题。” 海归创业者 为何聚焦信息安全产品 一面巨大的电子屏幕上,一张全国地图,东西南北,闪烁着亮点。...就在公司要上市时,范渊决定回国创业,自己的信息安全产品。 “中国的互联网、物联网、智慧城市的发展,一定会像西方社会一样壮大起来。”他相信。 2007年初,范渊回国。...2008年3月的一天,晚上8点,范渊团队进行系统排查的时候,发现官网被黑客侵入了。 “从手法上看,这次进攻生猛,如果得逞,黑客很容易控制服务器。” 控制服务器是什么概念?...一时间全国停电、交通混乱……万众惊恐和焦躁背后是呆若木鸡、无计可施的总统、警察…… 这种情形,来了超人、蜘蛛侠会飞会打也没用了,只有电脑天才来一“键”封喉—— 安恒在为奥运信息网服务的时候,模拟黑客攻击系统...今年8月,范渊又要带着最新的研发成果,出发去新一届黑客大会了。

    71360

    Python环境】 信息图:Python数据科学

    我想通过学习Python语言来学习数据科学,所以我在谷歌上搜索:“我想通过学习Python语言来学习数据科学。”而在谷歌,不一会儿的功夫就列出所有关于Python语言学习的链接。...然后,你会对于无数可行的关于学习Python语言的相关链接而感到困惑。最终,你会因此停下来反思:“我到底该从哪里入手?”。 真的是这样吗?不要担心。因为你以前从未遇到过这样的情况。...这里有很多可用的资源,它们将引导你如何学习Python从而学会编程和数据科学。而其中的问题是它很难找到一个结构化的方法来掌握这门语言。...为了解决这些问题,我们想出了一些在Python中学习数据科学的一些比较好的学习路径。 现在,我们按着这些步骤前进,同时为您提供一份相同效果的信息图表。...原文链接: http://www.analyticsvidhya.com/blog/2015/05/infographic-quick-guide-learn-python-data-science/

    86790

    Python 文本挖掘的流程

    这个是 Python 做得最好的事情,优秀的包有很多,比如 scrapy,beautifulsoup等等。...由于 Python2 的历史原因,不得不在编程的时候自己处理。英文也存在 unicode 和 utf-8 转换的问题,中文以及其他语言就更不用提了。...同样,可以正则表达式完成 \W 就可以。 转换成小写。 去掉停用词。Matthew L. Jockers 提供了一份比机器学习和自然语言处理中常用的停词表更长的停词表。中文的停词表 可以参考这个。...nltk 里面提供了好多种方式,推荐 wordnet 的方式,这样不会出现把词过分精简,导致词丢掉原型的结果,如果实在不行,也 snowball 吧,别用 porter,porter 的结果我个人太难接受了...jieba 是纯 Python 写的,Stanford 的可以通过 nltk 调用,复旦 NLP 也可以 Python 调用。 END.

    1.7K80

    python微博情感偏向分析

    首先需要说明的是内容有三点: 1)下面的例子仍然主要使用Python中NLTK和Scikit-Learn两个函数库。 2)SemEval 是NLP领域的带有竞赛性质的年度盛会,类似KDD-Cup。...要得到更高的准确率,需要在模型构建和特征选择上更深层次的思考。而这些“思考”已经超出本博文所讨论的范围。...这样的目的,在于我们期望剔除那些在全部训练数据集中极少出现的词汇(生僻词),以及那些频繁出现但毫无意义的词汇(通常我们称之为停词 stop words,例如 the, of, a等)。...当然这种追平可以是补齐,也可以是删减,所以通常,我们都是补齐短的这样的方式来实现维度一致。...vec.fit_transform(feature_dicts_tra) sparse_matrix_dev = vec.transform(feature_dicts_dev) 当然,这里你还可以下面的代码来测试一下他们的维度是否按我们预想的那样

    1.6K50

    教你python文本分类

    这次我们python的scikit-learn模块实现文本分类。...从datasets获取到一般都是一个Bunch对象,Bunch是一种类似于python字典的格式,我们拿到任何一个数据集之后都可以探索数据集,输出Bunch对象的键keys看看有什么,看看数据集的描述,...如果是处理中文语料,那么我们就需要提前分词,去除停用词,然后就可以CountVectorize来得到VSM模型的矩阵了。...卡方检验,卡方值描述了自变量与因变量之间的相关程度:卡方值越大,相关程度也越大,所以很自然的可以利用卡方值来降维,保留相关程度大的变量。...还有我们可以把VSM模型中的权值改为bool值,或者tf-idf值,来看看效果是否有提升,这些scikit-learn都可以很方便的实现。 理解了python文本分类了吗?

    3.9K80
    领券