首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何使用FME完成值的替换?

    为啥要替换值? 替换的原因有很多。比如,错别字的纠正;比如,数据的清洗;再比如,空值的映射。 如何做? 我们使用FME来完成各种替换,针对单个字符串,可以使用StringReplacer转换器来完成。...StringReplacer转换器是一个功能强大的转换器,通过这个转换器,可以很方便的完成各种替换,甚至是将字段值映射为空。...针对这个需求,我尝试了以下几种解决方式: StringReplacer转换器 针对这种需求,在没拿到数据的时候,我用Creator转换器造了数据, 首先想到了是StringReplacer转换器,我进行了如下图所示的设置...替换结果是ok的,成功的将空格映射成了字符串: ? 运行结果 ?...总结 StringReplacer转换器,适用于单个字段的指定值映射。在进行多个字段替换为指定值的时候没什么问题,但是在正则模式启用分组的情况下,就会出错。

    4.7K10

    python dataframe筛选列表的值转为list【常用】

    筛选列表中,当b列中为’1’时,所有c的值,然后转为list 2 .筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list 3 .将a列整列的值,转为list(两种) 4....筛选列表,当a=‘one’时,取整行所有值,然后转为list 具体看下面代码: import pandas as pd from pandas import DataFrame df = DataFrame...one 1 一 2 two 2 二 3 three 3 三 4 four 1 四 5 five 5 五 """ # 筛选列表中,当b列中为’1’时,所有c的值...= df.c[df['b'] == '1'].tolist() print(b_c) # out: ['一', '一', '四'] # 筛选列表中,当a列中为'one',b列为'1'时,所有c的值...a_b_c = df.c[(df['a'] == 'one') & (df['b'] == '1')].tolist() print(a_b_c) # out: ['一', '一'] # 将a列整列的值

    5.1K10

    Pandas中替换值的简单方法

    为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。 在这篇文章中,让我们具体看看在 DataFrame 中的列中替换值和子字符串。...当您想替换列中的每个值或只想编辑值的一部分时,这会派上用场。 如果您想继续,请在此处下载数据集并加载下面的代码。...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。...replace 方法,然后将我们想要替换的值作为第二个参数传递。...但是,在想要将不同的值更改为不同的替换值的情况下,不必多次调用 replace 方法。相反,可以简单地传递一个字典,其中键是要搜索的列值,而值是要替换原始值的内容。下面是一个简单的例子。

    5.5K30

    DataFrame数据的平移和绝对值方法小记

    昨天突然觉得自己不会dataframe的数据平移。...今天赶早学一下,这个python数据平移还是很重要的,尤其是你想处理一个数据的时候,如果把数据转成简单的数组那就南辕北辙了,在现有的技术上如果能够完美支持我们必然选择现有的成熟的技术方法而不是重复的造轮子...from pandas import Series, DataFrame import numpy as np #数据平移 data = DataFrame(np.arange(15).reshape...) #新增一列 data['g']=data["e"] print(data) #对新增列进行向前平移 data["g"]=data['g'].shift(-1) print(data) #对于NaN用0...补齐 data=data.fillna(0) print(data) #对两列数据进行一个减法 data['sub']=data["e"]-data['g'] print(data) #对求的新数据求绝对值

    1.1K20

    Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量)

    Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量) ---- 目录 Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量) 前言...环境 基础函数的使用 DataFrame记录每个值出现的次数 重复值的数量 重复值 打印重复的值 总结 ---- 前言         这个女娃娃是否有一种初恋的感觉呢,但是她很明显不是一个真正意义存在的图片...Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- DataFrame记录每个值出现的次数...重复值的数量 import pandas as pd import numpy as np df = pd.DataFrame( {'name': ['张丽华', '李诗诗', '王语嫣...打印重复的值 import pandas as pd import numpy as np df = pd.DataFrame( {'name': ['张丽华', '李诗诗', '王语嫣',

    2.4K30

    聊聊多层嵌套的json的值如何解析替换

    最后不管是数据脱敏或者是多语言,业务抽象后,都存在需要做json值替换的需求。...今天就来聊下多层嵌套json值如何解析或者替换多层嵌套json解析1、方法一:循环遍历+利用正则进行解析这种做法相对常规,且解析比较繁琐。...i18nCode替换为具体语言的值为例 public String reBuildMenuJson(){ String orginalMenuJson = getMenuJson();...对json替换,推荐使用自定义json序列化注解的方式。但这种方式比较适合json的结构以及字段是固定的方式。...另一种方式,是直接转JsonObject,通过JsonObject来操作替换其次现在都是前后端分离,有些东西其实也可以放在前端实现,比如这种替换工作其实挺适合放在前端做的。

    1.6K30

    python下的Pandas中DataFrame基本操作(二),DataFrame、dict、array构造简析

    DataFrame简介:   DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。...跟其他类似的数据结构相比(如R的data.frame),DataFrame中面向行和面向列的操作基本上是平衡的。...其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。...导入基本python库: import numpy as np import pandas as pd DataFrame构造:   1:直接传入一个由等长列表或NumPy数组组成的字典; dict

    5.9K30

    PQ-批量“替换值”一次完成多个数值的“替换“

    问题:在整理数据中出现这样一个问题 我想要整理学科一列有许多要点击“替换值” 现在在这么多 一种情况一次操作,要做许多个步骤哦 思考:能不能用M函数批量操作,我要批量操作 寻找中…… 知识点 List.ReplaceMatchingItems...【对列表指定多个元素替换】 例如 = List.ReplaceMatchingItems({1..10},{{1,"a"},{3,"c"}}) 我可以这样的 = List.ReplaceMatchingItems...,再用List函数批量替换 接下来是要把完成的一个列表横向拼接到表格中 Table.FromColumns(列表,标题) 例子:Table.FromColumns({{1,2,3},{4,5,6},{7,8,9,10...}},{"A","B","C"}) 把原来的表的所有列提出来(表转列表) 再原来的表的标题提出来 列表转表 ----------代码如下----- let 源 = Excel.CurrentWorkbook...Table.ToColumns(源)&{学科}, 自定义1 = Table.FromColumns(列表,标题) in 自定义 ----------代码完----- 完成 也不知有没有更好的方法

    2.2K10

    postgresql 如何处理空值NULL 与 替换的问题

    在业务开发中,经常会遇到输入的值为NULL 但是实际上我们需要代入默认值的问题,而通常的处理方法是,在字段加入默认值设置,让不输入的情况下,替换NULL值,同时还具备另一个字段类型转换的功能。...1 默认值取代NULL 2 处理程序可选字段的值为空的情况 3 数据转换和类型的转换 下面我们看看如何进行实际中的相关事例 事例1 程序中在需要两个字段进行计算后,得出结果进行展示,比如买一送一,或买一送二...这里采用了coalesce 函数,在 sell_discount 为NULL的情况下,则我们用1来替代这个值,保证最终计算的逻辑结果是正确的。...实际上,如果在设计表的时候,给这个字段的默认值为1 ,也可以解决这个问题,但是如果早期未做处理,上线后数据量较大,也可以用coalesce 来解决这个问题,并且使用这个函数是灵活的,后面NULL 可以替代的值也是你可以随意指定的...COALESCE可以与其他条件逻辑(如CASE)结合使用,这基于特定条件或标准对NULL值进行更复杂的处理。通过利用COALESCE的灵活性并将其与条件逻辑相结合,您可以实现更复杂的数据转换和替换。

    2K40

    milvus的二值索引与浮点数索引的性能对比

    测试数据量:1000万随机向量,维度64,向量维度的每个值都是0或者1。...nprobe": 10}, } result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=10) 二值向量索引...检索性能比较 内存 耗时 二值索引 0.52GB 9.2秒 浮点数索引 2.72GB 45秒 内存计算:向量加载到内存前后的内存占用差值。...(根据这个值也可以计算出我们项目大概在向量的存储上大概需要的内存配置) 这个耗时差距应该并不只是索引类型的差异,很可能跟距离指标有关,一个是使用L2距离,一个是使用汉明距离,显然前者的计算量要大于后者。...可见选择正确的存储及索引方式是非常重要的,有时间可以进行更多的比较。

    51730

    mysql查询字段中带空格的值的sql语句,并替换

    (自己写的这四行)查询带有空格值的数据:SELECT * FROM 表名 WHERE 字段名 like ‘% %’; 去掉左边空格 update tb set col=ltrim(col); 去掉右边空格...set col=rtrim(col); (1)mysql replace 函数 语法:replace(object,search,replace) 意思:把object中出现search的全部替换为...replace 代码如下 复制代码 update `news` set `content`=replace(`content`,’ ‘,”);//清除news表中content字段中的空格 这样就可以直接用...,如果数据库中的这个字段的值含有空格(字符串内部,非首尾),或者我们查询的字符串中间有空格,而字段中没有空格。...官方文档上说是MySQL校对规则属于PADSPACE,对CHAR和VARCHAR值进行比较都忽略尾部空格,和服务器配置以及MySQL版本都没关系。

    9.4K20
    领券