首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据科学 IPython 笔记本 7.7 处理缺失数据

在标记方法中,标记值可能是某些特定于数据的惯例,例如例如使用-9999或某些少见的位组合来表示缺失整数值,或者它可能是更全局的惯例,例如使用NaN(非数字)表示缺失浮点值,这是一个特殊值,它是 IEEE...例如,R 语言使用每种数据类型中的保留位组合,作为表示缺失数据的标记值,而 SciDB 系统使用表示 NA 状态的额外字节,附加到每个单元。...Pandas 中的缺失数据 Pandas 处理缺失值的方式受到其对 NumPy 包的依赖性的限制,NumPy 包没有非浮点数据类型的 NA 值的内置概念。...删除空值 除了之前使用的掩码之外,还有一些方便的方法,dropna()(删除 NA 值)和fillna()(填充 NA 值)。...填充空值 有时比起删除 NA 值,你宁愿用有效值替换它们。这个值可能是单个数字,如零,或者可能是某种良好的替换或插值。

4.1K20

R&Python Data Science系列:数据处理(5)--字符串函数基于R(一)

0 前言 数据根据结构可以分为结构化数据、非结构化数据和半结构化数据,前面介绍的数据处理函数针对于结构化数据,而字符串通常包含非结构化或者半结构化数据,这一部分介绍一下R和Python中的字符串函数。...非结构化数据,没有结构性的数据,各种文档、图片、视频、音频等都属于非结构化数据。对于非结构性数据,一般直接整体进行存储,而且通常存储为二进制的数据格式。...4.1 非正则表达式字符串函数 str_c()函数 字符串组合函数。...str_pad()函数 字符串填充函数。指定字符串的长度,不足长度的位置用填充符填充,字符串长度已经长于指定长度,不填充。...str_replace_na()函数 将NA转换成字符串NA,不然字符串之间操作缺失值会传染。

77120
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas 缺失数据处理大全(附代码)

    因为nan在Numpy中的类型是浮点,因此整型列会转为浮点;而字符型由于无法转化为浮点型,只能归并为object类型('O'),原来是浮点型的则类型不变。...type(pd.Series([1,None],dtype='O')[1]) >> NoneType 3、NA标量 pandas1.0以后的版本中引入了一个专门表示缺失值的标量pd.NA,它代表空整数...除了用前后值来填充,也可以用整个列的均值来填充,比如对D列的其它非缺失值的平均值8来填充缺失值。...删除缺失值也非情况,比如是全删除还是删除比较高缺失率,这个要看自己的容忍程度,真实的数据必然会存在缺失的,这个无法避免。...,但值会保留在列中,可以使用skipna=False跳过有缺失值的计算并返回缺失值。

    2.4K20

    pandas 缺失数据处理大全

    本次来介绍关于缺失值数据处理的几个常用方法。 一、缺失值类型 在pandas中,缺失数据显示为NaN。缺失值有3种表示方法,np.nan,none,pd.NA。...因为nan在Numpy中的类型是浮点,因此整型列会转为浮点;而字符型由于无法转化为浮点型,只能归并为object类型('O'),原来是浮点型的则类型不变。...type(pd.Series([1,None],dtype='O')[1]) >> NoneType 3、NA标量 pandas1.0以后的版本中引入了一个专门表示缺失值的标量pd.NA,它代表空整数...除了用前后值来填充,也可以用整个列的均值来填充,比如对D列的其它非缺失值的平均值8来填充缺失值。...删除缺失值也非情况,比如是全删除还是删除比较高缺失率,这个要看自己的容忍程度,真实的数据必然会存在缺失的,这个无法避免。

    47920

    R语言数据分析利器data.table包 —— 数据框结构处理精讲

    ;而data.table 会将非数字转化为字符 data.table数据框也可使用dplyr包的管道,这里不作阐述。...的列名,old是旧列名或者数字位置,new是新列名 setcolorder(x,neworder) 重新安排列的顺序,neworder字符矢量或者行数 set(DT,rownum,colnum,value...DT[v>1, sum(y), by=v] #对v列进行分组后,取各组中v>1的行出来,各组分别对定义的行中的y求和 DT[, .N, by=x] #用by对DT 用x分组后,取每个分组的总行数...roll 当i中全部行匹配只有某一行不匹配时,填充该行空白,+Inf(或者TRUE)用上一行的值填充,-Inf用下一行的值填充,输入某数字时,表示能够填充的距离,near用最近的行填充 rollends... 填充首尾不匹配的行,TRUE填充,FALSE不填充,与roll一同使用 which TRUE返回匹配的行号,NA返回不匹配的行号,默认FALSE返回匹配的行 .SDcols 取特定的列,然后.

    5.9K20

    基本操作包的移动向量矩阵数组数据框列表因子NA字符串

    1个以外的其它元素 x[c(1,3,5)]#取第1,3,5个元素 x[c(T,F)]#>1,3,5 循环补充 x[x>3]#从向量x中取出大于3的数 x[x>2&x3 同时 3.1.2 字符型向量...-3#把向量x中的第1个数改为3 四.矩阵(矩阵的四则运算需要行列一致) 4.1创建矩阵 m 按列填充,遵循循环补齐原则 m 值) NaN(不存在的值,如0/0) Inf(无穷大或无穷小,不可能的值,如1/0) a NA,1:49) is.na(a)#测试向量a里面含元素NA吗 sum(a,na.rm =...TRUE) mean(a,na.rm = TRUE)#按49个数来计算 colSums(is.na(sleep))#计算每一列缺失值数目 rowSums(is.na(sleep)) c NA,...1:20,NA,NA) d na.omit(c)#将NA值移除 十.字符串 10.1 统计字符串长度 > length(c(1,23,456)) [1] 3 > nchar(c(1,23,456)

    18130

    【生信技能树培训笔记】R语言基础(20230112更新)

    表示“存在但未知”,as.numeric("jimmy")返回NA,意思是可以将Jimmy这个字符串转换成数值类型,但是这个这个值是未知的?...不建议用带引号的字符。可以用字母和数字的组合,但是数字要在字母后面。不能用空格,运算符号在名称中。可以使用下划线。不建议用中文作为变量名称。2....(叹号)重点:按照逻辑值:中括号里是与x等长且一一对应的逻辑值向量。按照位置:中括号里是由x下标组成的向量。因此,指定向量中的具体某个元素时,无论用逻辑值还是位置来指定,都必须使用向量。...默认all=FALSE,表示只取共同列或行中相同值的内容进行合并,当指定all=TRUE时,取两个数据框中指定行列的并集进行合并,任一表中的缺失值,则用NA填充。...相应的缺失值同样用NA填充,如:> merge(test1, test2, by='name', all.x = T) name blood_type group vision1 Damon

    4.1K51

    Pandas笔记-进阶篇

    skipna 排除缺失值,默认True level 如果轴是层次化索引的,则根据level分组简约 描述和汇总统计 方法 说明 count 非NA值的数量 describe 针对Series或各DataFrame...(对时间序列很有用) pct_change 计算百分数变化 相关系数与协方差 corr方法用于计算两个Series中重叠的、非NA的、按索引对齐的值的相关系数。...留个笔记P146 唯一值、值计数以及成员资格 unique方法可以得到Series中唯一值的数据,返回的唯一值是未排序的。value_counts用于计算一个Series中各值出现的概率。...处理方法 方法 说明 dropna 根据各标签的值中是否存在缺失数据对轴标签进行过滤,可通过阈值调节对缺失值的容忍度 fillna 用指定值或插值方法(如ffill或bfill)填充缺失数据 isnull...,但在DataFrame中可以选择丢弃全NA或者含有NA的行或列。

    68920

    使用Python建立你数据科学的“肌肉记忆”

    Metro值为N/A的行 3.2为固定的一组列选择非空行 选择2000之后没有null的数据子集: 如果要在7月份选择数据,需要找到包含“-07”的列。...3.3 用空值对划分子集 选择我们希望拥有至少50个非NA值的行,但不限列: # Drop the rows where at least one columns is NAs. # Method 1:...填充或替换(impute)NA: #fill with 0: raw_df.fillna(0) #fill NA with string 'missing': raw_df['State'].fillna...same as raw_df['2018-01']=raw_df['2018-01'].fillna((raw_df['2018-01'].mean()),inplace=False) 使用where函数按自己的条件填充...删除重复的值。 ‘CountyName’和’SizeRank’组合已经是唯一的了。所以我们只使用列来演示drop_duplicated的语法。

    2.9K20

    收藏|Pandas缺失值处理看这一篇就够了!

    对于存在多个属性缺失的情况,就需要对不同属性的缺失组合赋不同的权重,这将大大增加计算的难度,降低预测的准确性,这时权重法并不理想。...用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。 假设为信息完全的变量,为存在缺失值的变量,那么首先对或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。...,如果是np.nan填充,那么它的值会自动变为True而不是False。...返回的结果中没有C,根据对齐特点不会被填充 df_f.fillna(df_f.mean()[['A','B']]) ?...Nullable类型是一种为了统一NaN,Null,NaT三类缺失值而诞生的新的类型。是在原来的数值、布尔、字符等类型的基础上进行小改,优化了当出现缺失值情况时的应对。

    3.8K41

    数据分析之Pandas缺失数据处理

    对于存在多个属性缺失的情况,就需要对不同属性的缺失组合赋不同的权重,这将大大增加计算的难度,降低预测的准确性,这时权重法并不理想。...用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。 假设为信息完全的变量,为存在缺失值的变量,那么首先对或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。...,如果是np.nan填充,那么它的值会自动变为True而不是False。...返回的结果中没有C,根据对齐特点不会被填充 df_f.fillna(df_f.mean()[['A','B']]) ?...Nullable类型是一种为了统一NaN,Null,NaT三类缺失值而诞生的新的类型。是在原来的数值、布尔、字符等类型的基础上进行小改,优化了当出现缺失值情况时的应对。

    1.7K20

    Python之Pandas中Series、DataFrame实践

    1.2 Series的字符串表现形式为:索引在左边,值在右边。...排序和排名 要对行或列索引进行排序(按字典顺序),可使用sort_index方法,它将返回一个已排序的新对象;对于DataFrame,则可以根据任意一个轴上的索引进行排序。 8....处理缺失数据(Missing data) 9.1 pandas使用浮点值NaN(Not a Number)表示浮点和非浮点数组中的缺失数据。...9.2 NA处理办法 dropna 根据各标签值中是否存在缺失数据对轴标签进行过滤,可通过阀值调节对缺失值的容忍度 fillna 用指定的或插值方法(如ffil或bfill...)填充缺失数据 isnull 返回一个含有布尔值的对象,这些布尔值表示哪些值是缺失值/NA,该对象的类型与源类型一样 notnull isnull的否定式 10.

    3.9K50

    数据分析从零开始实战 | 基础篇(四)

    我的理解 字符串或编译的正则表达式,可选 包含与此正则表达式或字符串匹配的文本的一组表将返回。 除非HTML非常简单,否则您可能需要在此处传递一个非空字符串。....+”(匹配任何非空字符串)。默认值将返回页面上包含的所有标签包含的表格。 该值将转换为正则表达式,以便Beautiful Soup和LXML之间一致。...(3)对缺失数据处理之fillna函数 fillna()函数:用指定值或插值的方法填充缺失数据。 ?...在重新索引系列中填充空白值的方法。...我的理解 其实很简单,就是按列搜索空值,然后limit的值表示最大的连续填充空值个数。 比如:limit=2,表示一列中从上到下搜索,只替换前两个空值,后面都不替换。

    1.3K20

    Pandas知识点-缺失值处理

    而不管是空字符串还是空格,其数据类型都是字符串,Pandas判断的结果不是空值。 2. 自定义缺失值有很多不同的形式,如上面刚说的空字符串和空格(当然,一般不用这两个,因为看起来不够直观)。...在我们判断某个自定义的缺失值是否存在于数据中时,用列表的方式传入就可以了。...如果一行(或列)数据中少于thresh个非空值(non-NA values),则删除。也就是说,一行(或列)数据中至少要有thresh个非空值,否则删除。...limit: 表示填充执行的次数。如果是按行填充,则填充一行表示执行一次,按列同理。 在缺失值填充时,填充值是自定义的,对于数值型数据,最常用的两种填充值是用该列的均值和众数。...pad(axis=0, inplace=False, limit=None): 用缺失值的前一个值填充。 ffill(): 同pad()。 bfill(): 用缺失值的后一个值填充。

    4.9K40
    领券