首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用有限差分法检验神经网络梯度是行不通的

基础概念

有限差分法(Finite Difference Method, FDM)是一种数值计算方法,用于近似求解微分方程或偏微分方程。它通过在离散点上计算函数值的差分来逼近导数。在神经网络中,梯度是通过反向传播算法计算的,而有限差分法可以用来验证这些梯度的正确性。

相关优势

  1. 简单直观:有限差分法易于理解和实现,不需要复杂的数学推导。
  2. 适用性广:可以应用于各种类型的神经网络和优化算法。
  3. 验证工具:作为一种独立的验证工具,可以用来检查反向传播算法的正确性。

类型

有限差分法主要有两种类型:

  1. 前向差分法:通过向前移动一小步来近似导数。
  2. 后向差分法:通过向后移动一小步来近似导数。

应用场景

有限差分法通常用于以下场景:

  1. 梯度验证:在训练神经网络之前,验证反向传播算法计算的梯度是否正确。
  2. 边界条件处理:在求解偏微分方程时,处理边界条件。

为什么用有限差分法检验神经网络梯度是行不通的

  1. 计算成本高:有限差分法需要多次前向传播和反向传播,计算成本远高于反向传播算法。
  2. 数值不稳定性:由于浮点数精度问题,有限差分法可能会引入数值误差,导致梯度计算不准确。
  3. 效率低下:对于大规模神经网络,有限差分法的计算时间会显著增加,影响训练效率。

解决方法

  1. 自动微分:使用自动微分(Automatic Differentiation, AD)工具,如TensorFlow或PyTorch,这些工具可以高效地计算梯度,并且通常比有限差分法更准确。
  2. 梯度检查:在开发阶段,可以使用梯度检查工具来验证反向传播算法的正确性,而不是依赖有限差分法。
  3. 优化算法:选择高效的优化算法,如Adam或RMSprop,这些算法在计算梯度时通常比有限差分法更稳定和高效。

示例代码

以下是一个使用PyTorch进行梯度检查的简单示例:

代码语言:txt
复制
import torch

def f(x):
    return x ** 2

x = torch.tensor(2.0, requires_grad=True)
y = f(x)
y.backward()

# 计算数值梯度
h = 1e-5
grad_numerical = (f(x + h) - f(x - h)) / (2 * h)

# 打印结果
print("Analytical Gradient:", x.grad.item())
print("Numerical Gradient:", grad_numerical.item())

参考链接

通过上述方法和工具,可以更高效和准确地验证神经网络的梯度计算,避免有限差分法带来的高成本和不稳定性问题。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

听,梯度声音!听觉监控神经网络训练,边听音乐边炼丹

大数据文摘出品 作者:钱天培、魏子敏 训练神经网络个极为枯燥工作。与其盯着Learning Curves发呆,或许可以调动一下其他感官,一起做点更有意思事情。...一位酷爱弹吉他数据科学家就希望,在调参时把其他器官也调动起来共同监督神经网络训练。 他用一段程序将神经网络训练时梯度转化成音频,这样,你就可以通过听不同声音模式知晓训练情况。...Perone也是位吉他手 他用一段程序将神经网络训练时梯度转化成音频,通过听不同声音模式就知道训练情况。 这是个讨巧训练监督方式,毕竟,听觉目前在神经网络训练中很少被用到感官。...以下几段声音显示了我们使用每层梯度范数进行合成声音,以及使用不同设置(如不同学习率、优化器、动量)对MNIST进行卷积神经网络训练训练步骤等。...没错,如你所料,可能没什么卵。虽然在上面的例子中,我们可以很明显得听出不同参数差别,但这些例子都是比较极端情况。 所以,为什么还要制作这些音频呢? 大概是因为,调参真的太无聊了吧。

54020

Math-Model算法综述

一般ARMA模型拟合时间序列,预测该时间序列未来值。Daniel检验平稳性 自动回归AR(Auto regressive)和移动平均MA(Moving Average)预测模型。...不适宜用于系统中长期预测 分方程 利用分方程建模研究实际问题,常常需要根据统计数据最小二乘法来拟合出差分方程系数。 适用于商品销售量预测、投资保险收益率预测。...神经元网络 数学建模中常用BP神经网络和径向基函数神经网络原理,及其在预测中应用。BP神经网络拓扑结构及其训练模式。RBF神经网络结构及其学习算法。...涉及题目 电磁波反射 菲涅尔方程 菲涅尔方程 电磁塔,远距离通信传输 热力学 热传导方程 热传导方程 隔热层设计,物件热传导,偏微分方程,有限分法 雷达 雷达公式 雷达方程 ASK,FSK,傅里叶分析...随机梯度下降算法(SGD) 高纬场最优解 Allingham-Sandmo模型 竞争最优化问题、语言竞争、税收遵从成本对纳税人行为影响分析问题 T检验 相似性检验 Ica(独立成分分析) 声波分离

1.1K20
  • Math-Model(一)算法综述

    类型 公式 参考链接 涉及题目 电磁波反射 菲涅尔方程 菲涅尔方程 电磁塔,远距离通信传输 热力学 热传导方程 热传导方程 隔热层设计,物件热传导,偏微分方程,有限分法 雷达 雷达公式 雷达方程 ASK...一般ARMA模型拟合时间序列,预测该时间序列未来值。Daniel检验平稳性 自动回归AR(Auto regressive)和移动平均MA(Moving Average)预测模型。...不适宜用于系统中长期预测 分方程 利用分方程建模研究实际问题,常常需要根据统计数据最小二乘法来拟合出差分方程系数。 适用于商品销售量预测、投资保险收益率预测。...神经元网络 数学建模中常用BP神经网络和径向基函数神经网络原理,及其在预测中应用。BP神经网络拓扑结构及其训练模式。RBF神经网络结构及其学习算法。...随机梯度下降算法(SGD) 高纬场最优解 Allingham-Sandmo模型 竞争最优化问题、语言竞争、税收遵从成本对纳税人行为影响分析问题 T检验 相似性检验 Ica(独立成分分析) 声波分离

    1.2K10

    数学建模--微分方程

    odeint(model, y0, t) # 输出结果 print(solution) 偏微分方程 import numpy as np from numba import vectorize # 定义有限分法求解泊松方程函数...以下一些常用数值方法及其适用问题类型详细说明: 欧拉法最简单数值求解方法之一,通过将微分方程中导数分代替来近似求解。...有限分法通过将微分方程离散化为代数方程组来求解。这种方法适用于偏微分方程定解问题,如椭圆型方程、抛物线型方程和双曲型方程。...龙格-库塔法和多步法较好选择,因为它们具有较高精度和稳定性。 偏微分方程数值求解通常采用有限分法有限元法。有限分法适用于定解问题,而有限元法则适用于边界值问题。...边值问题可以使用有限分法有限元法进行求解,特别是对于复杂几何形状和边界条件。

    11110

    数学建模一些方法_对数学建模认识

    二、建模方法分类 常用方法有: 1.类比法、2.二分法、3.量纲分析法、4.图论法;5.分法、6.变分法、7.数据拟合法、8.回归分析法 9.数学规划法(线性规划,非线性规划,整数规划,动态规划,目标规划...5、分法 分法数学思想通过taylor级数展开等方法,把控制方程中导数,网格节点上函数值商代替进行离散; 从而建立以网格节点上值为未知数方程组,将微分问题转化为代数问题,建立离散动态系统数学模型有效方法...分法解题步骤为:建立微分方程;构造分格式;求解差分方程;精度分析和检验。 微积分棒棒,所以说高数离散要好好学。...变分问题求解方法通常有两种:古典变分法和最优控制论。 变分法了解即可,很少了。...模拟退火、神经网络、遗传算法,这些涉及到东西就更深了,三大非经典算法拿出一个都是万金油。 尤其神经网络,就是机器学习中知识。 靠计算机训练学习,再通过校验,如此反复,迭代。得出模型。

    2.1K10

    深度学习利器之自动微分(1)

    损失函数计算出此次迭代损失,其关注点输入怎么影响到每一层。...Software 2.0 神经网络权重编写。没有人参与这段代码编写。...从导数原始定义中,我们可以直观看到前向分公式为: 当h取很小数值,比如0.000001 时,导数可以利用分来近似计算出来。只需要给出函数值以及自变量差值,数值微分算法就可计算出导数值。...具体公式如下: 虽然数值微分有一些缺点,但是好处简单实现,所以可以用来校验其他算法所得到梯度正确性,比如"gradient check"就是利用数值微分法。...链式法则是微积分中求导法则,用于求一个复合函数导数,在微积分求导运算中一种常用方法。复合函数导数将是构成复合这有限个函数在相应点 导数乘积,就像锁链一样一环套一环,故称链式法则。

    1.3K31

    梯度检验神经网络作用是什么?-ML Note 55

    一种思想就是本小节要讲梯度检验。 基本思想 说来也简单,就是我们使用一种和反向网络不同方法来计算(估算)梯度,然后通过这个梯度值用来验证我们神经网络计算值代码是否正确。具体怎么做呢?...而我们可以一个较小值\epsilon在\theta点处曲线点连接线斜率值,这个值来近似计算这个点导数,如下图所示,下图下半部分右边蓝色被画了叉叉公式单侧分,而我们用来近似导数双侧分...比较接近; 屏蔽梯度检验代码,满足了刚刚梯度检验后向传播代码进行神经网络学习。...注意:在正式训练你神经网络分类器时候一定一定要关闭你梯度检验函数,否则的话你训练会非常非常慢。...因为梯度检验仅仅是用来检验我们反向传播代码是不是正确,一旦确定了方向传播代码正确性,梯度检验神经网络训练中出来消耗更多计算资源就毫无用处了。

    62930

    热导方程Matlab数值解方法

    有热源热传导方程为: 我们来看一个比较简单形式求解方法。 ? 该条件下热导方程求解,采用两种不同形式分离变量法和分法。我们先来看分离变量法: ? 则: ? ?...我们再来看一下另外一种求解方法:有限分方法。 有限分:将求解域划分为分网格,有限个网格节点代替连续求解域。...有限分方法以泰勒级数展开等方法,把控制方程中导数网格节点上函数值商代替进行离散,从而建立以网格节点上值为未知数代数方程组. ? 离散化: ? ?...其代码实现为: %有限分法: u=zeros(10,25);%横坐标为x,纵坐标为t; s=(1/25)/(pi/10)^2; fprintf('稳定性系数S为:\n'); disp(s); for...end end disp(u); [x,t]=meshgrid(1:25,1:10); surf(x,t,u); xlabel('t');ylabel('x');zlabel('T');title('有限分法

    7.3K43

    自动微分技术

    自动微分要解决核心问题计算复杂函数,通常是多层复合函数在某一点处导数,梯度,以及Hessian矩阵值。它对用户屏蔽了繁琐求导细节和过程。...对于每一个目标函数都需要手工进行推导,因此通用性和灵活性。早期神经网络库如OpenCV和Caffe采用了这种方法。...更准确中心分(center difference approximation)公式 ? 它比单侧分公式有更小误差和更好稳定性。...数值微分通常只用于检验其他算法结果正确性,例如在实现反向传播算法时候数值微分算法检验反向传播算法所求导数正确性。...对于神经网络,一般有n>>m,前向算法会低效。 反向模式 反向模式反向传播算法一般化,其思路根据计算图从后向前计算,依次得到对每个中间变量节点偏导数,直到到达自变量节点处。

    1.3K30

    一份简短又全面的数学建模技能图谱:常用模型&算法总结

    【算术平均值、中位数、标准、方差、极差、偏度和峰度】、参数估计、假设检验….分布函数、密度函数和分位数 、分布拟合检验、中位数检验…....深度学习模型 【26】神经网络模型 深度学习模型“万能函数近似器”,可用于拟合各种非线性模型。...---- 【29】分方程模型 分方程包含未知函数分及自变数方程。...在求微分方程数值解时,常用分来近似微分,所导出方程就是分方程。通过解差分方程来求微分方程近似解,连续问题离散化一个例子。...变分法研究泛函极值问题一种经典数学方法,博文中还介绍了动态系统最优控制问题求解必要条件和最大值原理。

    3.6K42

    自动微分(Automatic Differentiation)简介

    在此之前,机器学习社区中很少发挥这个利器,一般都是Backpropagation进行梯度求解,然后进行SGD等进行优化更新。...虽然数值微分法有如上缺点,但是由于它实在太简单实现了,于是很多时候,我们利用它来检验其他算法正确性,比如在实现backprop时候,我们”gradient check”就是利用数值微分法。...自动微分法 终于轮到我们主角登场,自动微分存在依赖于它识破如下事实: 所有数值计算归根结底一系列有限可微算子组合 自动微分法一种介于符号微分和数值微分方法:数值微分强调一开始直接代入数值近似求解...自动微分Reverse Mode 如果您理解神经网络backprop算法,那么恭喜你,自动微分backward mode其实就是一种通用backprop算法,也就是backpropreverse...如上计算过程,对于像神经网络这种模型,通常输入上万到上百万维,而输出损失函数1维模型,只需要一遍reverse mode计算过程,便可以求出输出对于各个输入导数,从而轻松求取梯度用于后续优化更新

    3.1K30

    【计算机视觉】基础图像知识点整理

    低通滤波法 中值滤波法 图像锐化 空域锐化法 频域锐化法 边缘检测 正交梯度法 Roberts梯度算子法(4点分法) Prewitt梯度算子法(平均差分法) Sobel算子法(加权平均差分法) Laplacian...下图展示了为什么可以模板方式来求梯度。...梯度幅度代表边缘强度,其有下列三种计算方式: 为检测边缘点,可选取适当阈值T,对梯度图像进行二值化 选择一张图片,查看各梯度提取效果: Roberts梯度算子法(4点分法) ​ Roberts...就是采用对角方向相邻两像素之差,故也称为4点分法。...它水平和垂直梯度模板分别为: 利用检测模板可求得水平和垂直方向梯度,再通过梯度合成和边缘点判定,即可得到平局分法检测结果。

    1.4K20

    重磅干货 | 从连续视角看机器学习

    我们证明了传统机器学习模型和算法,如随机特征模型、两层神经网络模型和残神经网络模型,都可以表示成(以比例形式)对应连续形式离散化特例。...提纲 1.介绍 2.函数表示 2.1 基于积分变换表示 2.2 基于流表示 3.优化问题 3.1 有监督学习 3.2 降维 3.3 变分法 3.4 非线性抛物偏微分方程 4.梯度流 4.1 保守和非保守梯度流...重点关注函数表示、变分法问题和连续梯度流。特征和神经元作为对象出现在这些连续问题特殊离散化中。 我们从这个思考过程中至少学到了两件事。...另一方面,我们也看到了为什么神经网络(浅层和深层)不可避免选择:它们最简单连续梯度流模型最简单粒子方法离散化(分别用于基于积分变换和基于流表示)。...即使不是凸,它们也应该具有凸泛函许多特征。好一点,如果我们从连续模式开始,离散化模型很可能不会被离散效应导致局部极小所困扰。 3.不同梯度很好流,即相关范数应在流上变现良好。

    58610

    随机梯度下降优化算法_次梯度下降

    注意损失函数分段线性结构。多个实例损失则取平均值,因此右边碗形许多分段线性碗平均值(例如中间图所示那个)。 我们可以通过检验数学来解释损失函数分段线性结构。...5.4.1 有限分计算数值梯度 上面给出公式允许我们数值地计算梯度。...最后,全部梯度都保存在变量grad里面了。 实践考量:注意在数学公式中,h取值趋近于0,然而在实际中,一个很小数值(比如例子中1e-5)就足够了。...5.4.2 使用微积分计算梯度 使用有限分近似计算,数值梯度计算比较简单,但缺点它是近似的(因为我们必须选择一个小h值,而真正梯度被定义为h极限为零),并且它在计算上是非常昂贵。...介绍了利用有限分法来近似计算梯度方法,该方法实现简单但是效率较低。 我们看到,参数更新需要设置一个棘手超参数步长(或学习率):如果太低,进度稳定,但缓慢。如果太高,进度可能会更快,但风险更大。

    58710

    数学建模模型知识点总结

    模型总结 数学优化问题 线性规划:用于资源分配问题,目标最大化或最小化线性目标函数。 半定规划:处理变量对称矩阵半正定问题。 几何规划:优化问题中变量和目标函数都是几何形式。...LSTM神经网络:长短期记忆网络,用于时间序列预测。 混沌模型:用于描述和预测混沌系统行为。 支持向量机:用于分类和回归机器学习方法。 神经网络预测:深度学习模型,用于复杂模式识别和预测。...分方程模型:离散时间系统数学模型。 元胞自动机:用于模拟复杂系统空间模式。 排队论:研究等待线和服务系统数学理论。 蒙特卡罗模拟:通过随机抽样进行模拟方法。...粒子群算法:模拟鸟群或鱼群社会行为。 禁忌搜索:避免搜索过程中循环。 免疫算法:模拟生物免疫系统优化算法。 其他算法 二分法:在有序数组中查找元素算法。...模拟退火算法变体:如量子模拟退火,它利用量子计算特性来加速搜索过程。 机器学习中集成方法:如随机森林、梯度提升树等,它们通过结合多个模型来提高预测准确性。

    7810

    MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化

    数据源准备 利用MATLAB 程序解出待定温度,时间,厚度参数系数,最终将新温度和速度及厚度 建模 微分方程模型法: 数学微分法指根据边际分析原理,运用数学上微分方法,对具有曲线联系极值问题进行求解...线性规划: 线性规划研究有限资源最佳分配问题,即如何对有限要求背景作出最佳方式规划,以便最充分地发挥资源效能去获取最佳条件。...在总体计划中,线性规划模型解决问题思路,在背景需求条件约束下,求允许最大传送带过炉速度。当我们得到数学模型目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。...模型 检验 使用有限法中 空间反演法,把炉温曲线当做已知条件,结合给出传送带运行速度来确定数学模型中拟合预测值分布和真实值内容要点:结果分析、检验;模型检验及模型修正;结果表示如图该预测值与真实值方差...,标准和极差情况。

    26920

    梯度检验与高级优化

    梯度检验与高级优化 导读 神经网络 反向传播算法 目录 关键词 梯度检验与高级优化 1 关键词 缺位错误 off-by-one error 偏置项 bias term 数值检验 numerically...conjugate gradient 步长值 step-size 2 梯度检验与高级优化 众所周知,反向传播算法很难调试得到正确结果,尤其当实现程序存在很多难于发现bug时。...再假设我们已经代码实现了计算 J(θ)导数函数 ,接着我们使用 θ :=θ-a*g(θ)来实现梯度下降算法。那么我们如何检验 实现是否正确呢? 回忆倒数数学定义: ?...给定一个被认为能计算 J(θ)导数 函数,我们可以下面的数值检验公式: ? 计算两端是否一样来检验函数是否正确。 上式两端值接近程度取决于J 具体形式。...在神经网络例子里我们使用 J(W, b),可 以想象为把参数W, b 组合扩展成一个长向量θ 。现在我们将求导检验方法推广到一般化,即θ 一个向量情况。

    59590

    【AlphaGo Zero 核心技术-深度强化学习教程笔记07】策略梯度

    本讲组织架构如下:先提出价值函数在某些情况下不能很好解决问题,同时直接基于策略分析在某些场合具有价值函数不能替代优点,接着引入了直接基于策略学习所需要目标函数设计,引入了策略梯度概念,从有限分法...有限分策略梯度Finite difference Policy Gradient 策略梯度 Policy Gradient 令J(θ)可以是任何类型策略目标函数,策略梯度算法可以使J(θ)沿着其梯度上升至局部最大值...同时确定获得最大值时参数θ: ? 上式中▽θ J(θ)策略梯度: ? α步长参数,又称学习率。 ? 有限分法计算策略梯度 这是非常常用数值计算方法,特别是当梯度函数本身很难得到时候。...有限分法简单,不要求策略函数可微分,适用于任意策略;但有噪声,且大多数时候不高效。...举了一个利用有限分法训练机器人足球运动员,指出其训练参数控制机器人运动12个参数,其目标让其跑得最快,因为跑得快在机器人足球比赛里非常重要。

    98250

    【计算机视觉】基础图像知识点整理

    下图展示了为什么可以模板方式来求梯度。...图片梯度幅度代表边缘强度,其有下列三种计算方式:图片为检测边缘点,可选取适当阈值T,对梯度图像进行二值化图片选择一张图片,查看各梯度提取效果:图片Roberts梯度算子法(4点分法)Roberts...就是采用对角方向相邻两像素之差,故也称为4点分法。...它水平和垂直梯度模板分别为:图片利用检测模板可求得水平和垂直方向梯度,再通过梯度合成和边缘点判定,即可得到平局分法检测结果。...Sobel算子法(加权平均差分法)Sobel算子就是对当前行或列对应值加权后,再进行平均和分,也称为加权平均差分。

    1.3K10

    隐私保护新突破:高斯分隐私框架与深度学习结合

    要理解差分隐私,我们可以看看下面这个简单假设检验:假设有两个数据集 S, S' S={小明,小刚,小美};S'={小红,小刚,小美} 我们说这两个数据集邻近,因为它们差异仅体现在一个人上。...我们目的检验我们模型是否基于 S 训练,这等价于检验小明是否存在于我们数据中。如果这个假设检验非常困难,那么想要获取小明信息攻击者就难以得逞。...那么,如何实现能保证算法隐私性呢? 具体做法衡量算法中间产物(比如梯度敏感性,并根据其大小施加一个成正比噪音。由于噪音存在,想要窃取小明信息攻击者便无法确定小明是否在训练集中。...在深度神经网络中,每一次迭代都会牺牲一部分隐私来换取性能提高。我们可以对每个批(batch)梯度加噪音,从而达到混淆攻击者目的。 ? 当然,噪音加越大,隐私就越安全,但是随之性能也自然越。...在有限隐私预算下,很多时候隐私算法性能表现会不如人意。 深度学习经常需要敏感个人信息来训练。现存分隐私定义以及隐私模型都试图在性能和隐私中找到一个平衡。

    1.4K11
    领券