首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    让推荐系统变得会“说话”——推荐理由设计实践

    推荐系统对于处于信息爆炸时代的我们来说并不陌生。在日常生活中,我们使用到推荐系统提供的各种服务,在社交工具上认识志同道合的朋友,到音乐网站中欣赏自己感兴趣的音乐作品,从一大堆企业岗位信息中挑选出一份称心如意的工作等等。一个优秀的推荐系统能像朋友一样理解用户的需求,提供给用户有价值的信息,并且帮助用户做出正确合理的决策。而推荐系统要向人性化的方向发展,除了要深入分析用户喜好制定合理的推荐策略,能够对推荐的结果提供合理的解释也相当重要。推荐理由在推荐系统中随处可见,举一些典型例子譬如,“你可能认识小李,你们有16个共同好友”,“你收藏的《哈利波特》主演丹尼尔•雷德克里夫最新力作”等。作为推荐系统与用户的直接交流方式,推荐理由在推荐系统中发挥着重要的作用。本文将就我在推荐理由应用于推荐系统中的心得体会,与大家进行分享。

    01

    【腾讯云云上实验室】基于向量数据的客户价值体系推荐系统设计

    很早之前就有过想写推荐系统系列文章了,本人曾任职高级大数据工程师全程参与过推荐系统的搭建,故在搭建推荐系统算得上是有一定的经验。推荐系统搭建有相当多的细节和要考虑的业务情况,以及要结合当前业务信息和用户信息的多维度属性,可以说得上是个大工程。做推荐系统的最看重的就是模块设计和用户画像体系,这两块相当于推荐系统的心脏和肌肉,光靠一篇文章是比较难全面讲解整体推荐系统的搭建的,好在腾讯云推出了向量数据库,免去了最为繁琐复杂的向量数据库设计步骤,可以直接利用腾讯云数据库强大的功能快速构建推荐系统。本篇文章将详细介绍推荐系统的定义以及推荐系统的架构设计,和深入浅出讲解向量分析,最后通过实例案例结合腾讯云向量数据库完成轻量级推荐系统搭建。

    02

    基于SpringBoot的协同过滤商品推荐商城系统

    随着网络的普及,网络资源不断丰富,网络信息量不断膨胀。用户要在众多的选择中挑选出自己真正需要的信息好比大海捞针,出现了所谓的“信息过载”的现象。信息过载是指的是社会信息超过了个人或系统所能接受、处理或有效利用的范围,并导致故障的状况。个性化推荐系统的出现是为了解决信息过载的问题,帮助消费者在浩如烟海的产品中找到自己需要的产品,为消费者提供个性化的购物体验。个性化推荐系统日益受到用户的青睐,也受到越来越多的学者和电子商务网站的关注。 个性化推荐可以作为网络营销的一种手段,能为电子商务网站带来巨大的利益。个性化推荐的目标是根据具有相似偏好的用户的观点向目标用户推荐新的商品。好的个性化推荐系统能够发掘用户喜欢的商品,并推荐给用户。对于用户而言,如果打开网站的链接并登陆,就能找到自己喜欢的商品,会省下很多翻看网页的时间和精力,而这样的网站,一定会受到用户的青睐。一个好的个性化推荐系统可以为用户提供便利,继而,使用户与网站之间有更好的粘合度,提高电子商务网站的市场竞争能力。 在众多的个性化推荐算法中,协同过滤被广泛应用,也是最成功的推荐算法。本课题旨在研究基于用户的协同过滤推荐算法在电子商务个性化商品推荐中的应用。 研究电子商务推荐系统对企业和社会具有很高的经济价值。电子商务个性化推荐系统的关键是建立用户模型。推荐系统的热点问题是推荐技术和推荐算法的研究。推荐算法是整个推荐系统的核心,它的性能决定了最终推荐结果的好坏。为了建立合理的用户模型,满足不同用户对实时性、推荐方式等的要求,产生了一系列的推荐技术和算法。涉及的技术包括基于内容的过滤技术、协同过滤技术、关联规则挖掘技术、分类和聚类技术、神经网络技术等等。 个性化的服务在商家与顾客之间建立起了一条牢固的纽带。顾客越多地使用推荐系统。推荐系统可以更适合顾客的需要,将顾客更多地吸引到自己的网站,与顾客建立长期稳定的关系。从而能有效保留用户,防止用户流失。 个性化推荐技术是电子商务推荐系统中最核心最关键的技术,很大程度上决定了电子商务推荐系统性能的优劣

    01

    推荐系统模型发展简史

    互联网出现不久,推荐系统就诞生了,相关技术在学术界和工业界得到了广泛的研究和应用。目前,推荐系统已经成为最成功的网络应用之一,通过推荐不同种类的内容来为数十亿人服务,包括新闻资讯、视频、电子商务产品、音乐、电影、书籍、游戏、朋友、工作等。这些成功的案例证明,推荐系统可以将大数据转移成高价值。本文从两个方面简要回顾了推荐系统的发展历程:(1)推荐模型,(2)典型推荐系统的架构。之前我们整理了近30年关于推荐模型的发展历史可参考一文尽览推荐系统模型演变史(文末可下载),另外关于中国推荐系统发展历史可参考那些用推荐引擎改变世界的人。我们希望这个简短的回顾能够帮助了解网络推荐系统的进展,并且这些点在未来会以某种方式连接起来,从而激励建立更先进的推荐服务进而改变世界。

    04

    推荐系统算法和模型实战经验【肝了好久】

    我们在学习推荐系统的时候,最好是理论结合项目一起来做,项目能直接检验学习的理论知识。我觉得推荐系统算法和其他深度学习算法不一样的点在于:推荐系统算法有比较多的项目可以去练手(就是说推荐系统算法的应用更大众化,模型应用广泛,训练数据更多。) 本文将从推荐系统理论知识,到经典算法,到模型应用和大家详细说一说。(最后会给大家总结一个学习路径,需要的自取) 推荐系统发展 分类目录👉搜索引擎👉推荐系统 推荐系统能做的 推荐系统能够主动为我们提供千人千面、个性化服务 电商:据说亚马逊收入至少有35%来自推荐算法; 应用

    03
    领券