4.3 变量的重编码 1)将连续变量修改为一组类别值; 2)将误编码替换为正确值; 3)基于一组条件进行逻辑判断变量; 4)逻辑运算: != 不等于; == 严格等于(慎用); !...1)leadership$age[leadership$age == 99] <- NA within()可以认为是数据框版本的with(),将每一行都设置为缺失值,然后按条件赋值(字符型变量,还不是有序因子...4.5 缺失值 R中的字符型缺失值与数值型数据使用的缺失值符号是相同的。缺失值以符号NA(Not Available,不可用)表示。...($ == NA 错误) 不可能的值用NaN来标记(Not a number,不是一个数),用is.nan(),例如:sin(Inf) 4.5.2 重编码某些值为缺失值 leadership$age...sum(leadership$q5, na.rm=TRUE) 4.5.4 函数na.omit()可以移除所有含有缺失值的观测(行)。
本文是【统计师的Python日记】第5天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型; 第2天学习了python的函数、循环和条件、类。...相关系数 利用 .corr() 可以计算相关系数,比如计算四个季度的相关系数: ? 计算年份的相关系数呢?转置一下就可以了: ? 然而可惜的是——没有P值!...丢弃缺失值 两种方法可以丢弃缺失值,比如第四天的日记中使用的的城市人口数据: ? 将带有缺失的行丢弃掉: ? 这个逻辑是:“一行中只要有一个格缺失,这行就要丢弃。”...另一种丢弃缺失值的方法是 data[data.notnull()] ,但是只能处理 数值型 数据。 ? 2....这个例子中索引有两层,国家和年份,来学习一些简单的操作。 1. 用层次索引选取子集: ? ? 选取多个子集呢? ? 2. 自定义变量名 自定义变量名的好处很多,可以更方便的对数据进行选择。
上一篇,预告了下面这张图,请大家可以思考,这张图是怎么做出来的?**(不用怀疑,这的确是用Excel做的。) ?...当然,如果您认为这是一个疑问的话,肯定是不能满足于这样的回答,另一个方案是辅助列法 步骤1:增加三个辅助列。...单独设置X轴的高度和颜色 但是要实现变色是几乎不可能的,所以我们需要引入一张单独的X轴图表来呈现 步骤1:直接增加另外4行辅助列 Xpre:以前年份的数据 Xcurrent:当前年份的数据 Xforecst...步骤7:添加数据表中的判断条件,使其自动判断数据是以前的,当前的,或预测年份的数据(原始数据放在灰色区域,图表数据全部基于后面的辅助列完成) 设置X轴的高度值为3.5(可依据自己的喜好进行调整) 设置当前年份值为...数据系列的重叠设置,包括数据表及X轴的设置 多张图表的拼接,让成图看似为浑然天成 利用条件判断,自动获取数据值 …… 最重要的是,通过这个例子,给大家带来一个在Excel里作图的全新思路,就是多张图表的拼接与组合
一旦你有了整洁的数据和一些包提供的整洁工具,您将花费很少时间将数据从一种表示转换到另一种,从而可以将更多的时间花在分析问题上。 本文将为您提供整理数据的实用介绍以及tidyr包中附带的工具。...变量名中给出的结构(例如new_sp_m014,new_ep_m014,new_ep_f014)可能是值,而不是变量。...我们知道单元格代表案件数,因此我们将变量数存储在cases中,并用na.rm去除含有缺失值的行。这里使用pivot_longer()将数据变长,具体见后面函数详情。...values_drop_na 如果为真,将删除value_to列中只包含NAs的行。...具体见下图,相当于把key中的值变为列名,对应的values数据转化到population中.下面是简单的例子。 ?
这种分类类型允许用索引替换重复值,还可以把实际值存在其他位置。教科书中的例子是国家。和多次存储相同的字符串「瑞士」或「波兰」比起来,为什么不简单地用 0 和 1 替换它们,并存储在字典中呢?...否则,对于 DataFrame 中的每一个新行,Pandas 都会更新索引,这可不是简单的哈希映射。...nlargest 得到自杀率排前十的国家和年份 在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum...生成的 DataFrame 如下所示: ? 索引是「年份」和「国家」。.../pandas-docs/stable/user_guide/gotchas.html#support-for-integer-na支持带有整数的 NaN 值; 记住,任何密集的 I/O(例如展开大型
3、查看特定行 这里使用的方法是loc函数,其中我们可以指定以冒号分隔的起始行和结束行。注意,索引从0开始而不是1。 ? 4、同时分割行和列 ? 5、在某一列中筛选 ? 6、筛选多种数值 ?...7、用列表筛选多种数值 ? 8、筛选不在列表或Excel中的值 ? 9、用多个条件筛选多列数据 输入应为列一个表,此方法相当于excel中的高级过滤器功能: ? 10、根据数字条件过滤 ?...五、数据计算 1、计算某一特定列的值 输出结果是一个系列。称为单列数据透视表: ? 2、计数 统计每列或每行的非NA单元格的数量: ? 3、求和 按行或列求和数据: ? 为每行添加总列: ?...9、多条件求和 ? 10、求算术平均值 ? 11、求最大值 ? 12、求最小值 ? 13、Groupby:即Excel中的小计函数 ?...简单的数据透视表,显示SepalWidth的总和,行列中的SepalLength和列标签中的名称。 现在让我们试着复杂化一些: ? 用fill_value参数将空白替换为0: ?
数据筛选与修改 数据的增删改查是 pandas 数据分析中最高频的操作,在分组、聚合、透视、可视化等多个操作中,数据的筛选、修改操作也会不断出现。...数据修改–替换值 替换值(单值) # 数据修改--替换值(单值) 将金牌数列的数字 0 替换为 无 df_new['金牌数'].replace(0,'无',inplace=True) df_new 输出为...数据新增-增加列 比较值 新增一列比较值,如果一个国家的金牌数大于 20 则值为 是,反之为 否 df_new['金牌大于20'] = np.where(df_new['金牌数'] > 20, '是'...所有包含 国的行 # 筛选行|条件(包含指定值) # 提取 国家奥委会 列中,所有包含 国的行 df_new[df_new.国家奥委会.str.contains('国',na=False)] # 如果列中有字符串和数字类型需要家...na=False 输出为: ** 使用 query 提取 金牌数 大于 金牌均值的国家** # 筛选值|query(引用变量) # 使用 query 提取 金牌数 大于 金牌均值的国家 gold_mean
,Mac中和Windows中路径的写法不一样,上例是Mac中的写法,Windows中的相对路径和绝对路径需要分别换成类似'data\data.csv'和'E: \data\data.csv'的形式。...使用true_values和false_values将指定的文本内容转换为True或False,可以用列表指定多个值。...# int类型,默认为None pd.read_csv(data, nrows=1000) 17 空值替换 na_values参数的值是一组用于替换NA/NaN的值。如果传参,需要指定特定列的空值。...# a、b、c均被认为是NaN,等于na_values=['a','b','c'] pd.read_csv(data, na_values='abc') # 指定列的指定值会被认为是NaN pd.read_csv...比如,如果一行用双引号包裹着的数据中有换行符,用以下代码可以过滤其中的换行符。
你可以忽略矩阵中的警告信息和 NA 值,这些都是方法中人为因素所导致的。表中的相关系数并不特别大,表明数据是MCAR的可能性比较小,更可能为MAR,不过也绝不能排除数据是NMAR的可能性。...(mydata),] > newdata <- na.omit(mydata) #例子:用行删除法处理数据后再计算相关系数,探索睡眠研究中变量间的关系 > options(digits=1) > cor...表达式在函数的括号中, ~ 的左边是响应变量,右边是预测变量(用 + 符号分隔开)。 fit 是一个包含m个单独统计分析结果的列表对象。...18.8.2 简单(非随机)插补 简单插补,即用某个值(如均值、中位数或众数)来替换变量中的缺失值。...若使用均值替换,NonD 中的缺失值可用8.67来替换(两个值分别是Dream 和 NonD 的均值)。注意这些替换是非随机的,这意味着不会引入随机误差(与多重插补不同)。
Pandas类: 在我的数据处理过程中,用到最多的原始数据结构类型便是csv文件,好处简直不要太多啊,比起excel,它的数据量不受限制(具体可以百度),读取之后,以下几个技巧是我必须要注意的: 1、na...值,我的数据中缺失的数据通常用‘-‘代替,所以必须把它替换为na值,再转为异常值,进行处理 data2018=pd.read_csv('G:/fjsouthwestdatalist/data2018.csv...',sep=',',index_col=0,na_values='-') data2018=data2018.fillna(999999.000000) 但是当你无法确定数据中的缺失值或者其他属性的时候...df1在df2中存在的行,也就是取补集 df1 = df1.append(df2) df1 = df1.append(df2) print("补集(从df1中过滤df1在df2中存在的行):\n%s\n...a数组有0 ,用b数组替换 a[a==0]=b[a==0] Out[15]: array([[ 1, 2, 3], [ 2, 5, 6], [-3, -1, 9]]) 3、判断大小 3、不同维度的数组叠加
结构如下: 数据准备:将数值特征转换为分类;缺失值 EDA:对于数值特征和分类特征:平均价格与这些特征的表现 建模: 分割训练/测试给定年份的数据:例如,在2000年分割数据;根据这些数据训练回归模型...同样,一个简单的regexp进行省特征提取。 另一个大的数据准备工作是转换一些数字特征,比如地铁,地铁站附近的房子编码为1,相反的情况编码为0。 还有很大一部分DOM缺失。...我决定先保留这个特性,然后用中间值来填充缺失的值(分布是非常倾斜的) 否则,buildingType和communityAverage(pop.)中只有几个缺少的值,我决定简单地删除这些值。...,几乎是其他类型房屋的两倍 点击标题查阅往期内容 R语言用线性回归模型预测空气质量臭氧数据 01 02 03 04 建筑类型 makeEDA('buildingType' ) 平房是最昂贵的...装修条件 电梯 价格对电梯的依赖性非常小 住宅的分布与这一特征是相对相等的。
True, 可以用列表指定多个值。...# int, default None pd.read_csv(data, nrows=1000) 空值替换 na_values 一组用于替换 NA/NaN 的值。如果传参,需要制定特定列的空值。...# boolean, default True # 不自动识别空值 pd.read_csv(data, keep_default_na=False) 丢失值检查 na_filter 是否检查丢失值(空字符串或者是空值...# boolean, default True pd.read_csv(data, na_filter=False) # 不检查 解析信息 verbose 是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量...如果为False,则这些“坏行”将从返回的DataFrame中删除。 请参阅下面的坏行。
我们只知道当年度的值value_1、value_2,现在求group分组下的累计值,比如A、2014之前的累计值,可以用cumsum函数来实现。...Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。...,如果 cond 为真,保持原来的值,否则替换为other other:替换的特殊值 inplace:inplace为真则在原数据上操作,为False则在原数据的copy上操作 axis:行或列 将df...中列value_1里小于5的值替换为0: df['value_1'].where(df['value_1'] > 5 , 0) Where是一种掩码操作。...Isin Isin也是一种过滤方法,用于查看某列中是否包含某个字符串,返回值为布尔Series,来表明每一行的情况。
结构如下: 数据准备:将数值特征转换为分类;缺失值 EDA:对于数值特征和分类特征:平均价格与这些特征的表现 建模: 分割训练/测试给定年份的数据:例如,在2000年分割数据;根据这些数据训练回归模型...同样,一个简单的regexp进行省特征提取。 另一个大的数据准备工作是转换一些数字特征,比如地铁,地铁站附近的房子编码为1,相反的情况编码为0。 还有很大一部分DOM缺失。...我决定先保留这个特性,然后用中间值来填充缺失的值(分布是非常倾斜的) 否则,buildingType和communityAverage(pop.)中只有几个缺少的值,我决定简单地删除这些值。...,几乎是其他类型房屋的两倍 ---- 点击标题查阅往期内容 R语言用线性回归模型预测空气质量臭氧数据 01 02 03 04 建筑类型 makeEDA('buildingType' ) 平房是最昂贵的...装修条件 电梯 价格对电梯的依赖性非常小 住宅的分布与这一特征是相对相等的。
文本拼接 文本拼接是指将多个文本连接在一起,基于str.cat()方法 比如,将一个序列的内容进行拼接,默认情况下会忽略缺失值,我们亦可指定缺失值 连接一个序列和另一个等长的列表,默认情况下如果有缺失值...,则会导致结果中也有缺失值,不过可以通过指定缺失值na_rep的情况进行处理 连接一个序列和另一个等长的数组(索引一致) 索引对齐 在索引对齐中,我们还可以通过参数join来指定对齐形式,默认为左对齐...文本提取 我们在日常中经常遇到需要提取某序列文本中特定的字符串,这个时候采用str.extract()方法就可以很好的进行处理,它是用正则表达式将文本中满足要求的数据提取出来形成单独的列。...比如下面这个案例,我们用正则表达式将文本分为两部分,第一部分是字母a和b,第二部分匹配数字: 在上述案例中,expand参数为Fasle时如果返回结果是一列则为Series,否则是Dataframe。...b,第三行都没有,第四行有a和c): 以上就是本次全部内容,相信大家在熟练这些文本数据处理的操作后,在日常工作中对于文本数据的处理将会非常得心应手。
在这篇文章中,我尝试简单地归纳一下用Python来做数据清洗的7步过程,供大家参考。...⚠️ format 是你[原始数据]中日期的格式 %y 两位数的年份表示(00-99) %Y 四位数的年份表示(000-9999) %m 月份(01-12) %d 月内中的一天(0-31) %H 24...python缺失值有3种: 1)Python内置的None值 2)在pandas中,将缺失值表示为NA,表示不可用not available。...但是,我们应该用什么值替换呢?这个时候可能要结合你对这个数据集的理解,看填充什么数据才是比较合适,以下是一下常用的方法。...”这样的默认值进行替换。
Python中集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。...字典(dict) Python内置了字典dict,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度,其格式是用大括号{}括起来key和value用冒号“:”进行对应。...Python中,代码是逐行提交给解释器进行编译的,这里的一行称为逻辑行,实际代码也确实是一行,那么代码的物理行就只有一行,例如上述print代码,逻辑行和物理行是统一的。...4.1 For循环 下面是一个for循环的例子, i用于指代一个可迭代对象中a中的一个元素,for循环写好条件后以冒号结束,并换行缩进,第二行是针对每次循环执行的语句,这里是打印列表a中的每一个元素。...csv.to_csv('data/write.csv',encoding='utf-8',ind 关于作者:常国珍,数据科学专家和金融技术专家。
Excel 中查看空值的方法是使用“定位条件”功能对数据表中的空值进行定位。...“定位条件”在“开始”目录下的“查找和选择”目录中。 查看空值 Isnull 是 Python 中检验空值的函数,返回的结果是逻辑值,包含空值返回 True,不包含则返回 False。...Python 中使用 unique 函数查看唯一值。 查看唯一值 Unique 是查看唯一值的函数,只能对数据表中的特定列进行检查。下面是代码,返回的结果是该列中的唯一值。...下面的代码和结果中可以看到使用 dropna 函数后,包含 NA 值的两个字段已经不见了。返回的是一个不包含空值的数据表。 ...Where 函数用来对数据进行判断和分组,下面的代码中我们对 price 列的值进行判断,将符合条件的分为一组,不符合条件的分为另一组,并使用 group 字段进行标记。
领取专属 10元无门槛券
手把手带您无忧上云