首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

评估Keras深度学习模型的性能

Keras是Python中一个的强大而易用的库,主要用于深度学习。在设计和配置你的深度学习模型时,需要做很多决策。大多数决定必须通过反复试错的方法来解决,并在真实的数据上进行评估。...因此,有一个可靠的方法来评估神经网络和深度学习模型的性能至关重要。 在这篇文章中,你将学到使用Keras评估模型性能的几种方法。 让我们开始吧。 ?...在下面的例子中,我们使用Python的scikit-learn机器学习库中的StratifiedKFold类,将训练数据集分为10折。...折叠是分层的,这意味着算法试图平衡每一个类的实例数量 该示例使用10个分裂数据创建和评估10个模型,并收集所有得分。...你学到了三种方法,你可以使用Python中的Keras库来评估深度学习模型的性能: 使用自动验证数据集。 使用手动验证数据集。 使用手动k-折交叉验证。

2.2K80

理解keras中的sequential模型

keras中的主要数据结构是model(模型),它提供定义完整计算图的方法。通过将图层添加到现有模型/计算图,我们可以构建出复杂的神经网络。...Keras有两种不同的构建模型的方法: Sequential models Functional API 本文将要讨论的就是keras中的Sequential模型。...模型开发流程 从我们所学习到的机器学习知识可以知道,机器学习通常包括定义模型、定义优化目标、输入数据、训练模型,最后通常还需要使用测试数据评估模型的性能。...keras中的Sequential模型构建也包含这些步骤。 首先,网络的第一层是输入层,读取训练数据。...总结 keras中的Sequential模型其实非常强大,而且接口简单易懂,大部分情况下,我们只需要使用Sequential模型即可满足需求。

3.6K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Keras中创建LSTM模型的步骤

    创建和评估,但您必须遵循严格的模型生命周期。...在这篇文章中,您将了解创建、训练和评估Keras中长期记忆(LSTM)循环神经网络的分步生命周期,以及如何使用训练有素的模型进行预测。...阅读这篇文章后,您将知道: 如何定义、编译、拟合和评估 Keras 中的 LSTM; 如何为回归和分类序列预测问题选择标准默认值。...接下来,让我们来看看一个标准时间序列预测问题,我们可以用作此实验的上下文。 1、定义网络 第一步是定义您的网络。 神经网络在 Keras 中定义为一系列图层。这些图层的容器是顺序类。...总结 在这篇文章中,您发现了使用 Keras 库的 LSTM 循环神经网络的 5 步生命周期。 具体来说,您了解到: 1、如何定义、编译、拟合、评估和预测 Keras 中的 LSTM 网络。

    3.7K10

    用 keras 建立超简单的汉字识别模型

    之前看过很多 mnist 的识别模型,都是识别数字的,为啥不做一个汉字识别模型呢?因为汉字手写的库找不到啊。当时我还想自己从字库生成汉字用作识别(已经做出来了,导出字体图片再识别之)。...后来看了这篇文章和这篇文章 : CASIA-HWDB 这个神奇的东西。原文是用 tensorflow 实现的,比较复杂,现在改成用 keras 去完成。...如果用 tensorflow 写的话,大概需要 300 行,需要处理图像(当然 tf 也会帮你处理大部分繁琐的操作),需要写批量加载,还有各种东西。 到了 keras,十分简单。.../model.h5") 可以看到生成模型的代码就 12 行,十分简洁。开头两套双卷积池化层,后面接一个 dropout 防过拟合,再接两个全链接层,最后一个 softmax 输出结果。...实际看来汉字识别是图像识别的一种,不过汉字数量比较多,很多手写的连人类都无法识别,估计难以达到 mnist 数据集的准确率。 最后可以看到,keras 是非常适合新手阶段去尝试的,代码也十分简洁。

    5.4K10

    实战|如何利用深度学习诊断心脏病?

    该模型是用Keras实现的。 如果没有图像增强,u-net在训练数据集上的戴斯系数能达到0.99(0.01),这意味着该模型具有足够的能力来捕获RV分割问题的复杂性。...正如Andrew Ng在这个很棒的谈话中描述的那样,我们可以用更多的数据(这不太可能)、正则化(dropout和批处理规范化没有效果)、或尝试新的模型架构。...在DenseNet中,第一个卷积层的输出作为输入馈送到所有的后续层中,第二、第三层也这样。...三、结果 对人类在RV分割方面的评估给如何对模型的表现进行评估指明了方向。研究人员估计,人类完成RV分割任务的戴斯得分为0.90(0.10)。...我非常高兴地看到了扩张DenseNet能够在其他图像分割评测上成功运行。 文章的最后,我来谈谈本项目未来可能需要做的工作: 对数据集进行加权,以突出难以分割的根尖切片。

    1.6K30

    大语言模型中的常用评估指标

    大语言模型中的常用评估指标 EM EM 是 exact match 的简称,所以就很好理解,em 表示预测值和答案是否完全一样。...,叫 True Negative (FN); 这时再来看 F1 的计算,就更直观了: 在这里插入图片描述 precision 代表着召回结果中的正确比例,评估的是召回的准确性;recall 代表正确召回结果占完整结果的比例...(例如,对数似然值)中,选出其中最大的作为预测结果。...如果预测结果对应的选项索引和真实的正确选项索引相同,那么 accuracy 就是 1,否则为0; Accuracy norm(归一化准确率),这个指标在计算过程中,会对模型计算出的每个选项的分数进行归一化...对于一个正确的句子,如果模型得出的困惑度越低,代表模型性能越好。

    2.8K30

    大模型生成单测用例的评估方案

    大模型生成单元测试是目前比较常见的研发侧落地的应用场景之一。为了对大模型以及单测生成方案进行评估,因此梳理了一个评估方案,供业内同仁参考。...此处所谓的单测生成是指基于既有的代码,让大模型来自动生成单元测试。...生成成功的标志是: 1) 可以生成单元测试用例 2) 该用例可以被编译、执行通过 3) 被测方法被调用 4) 有断言 评估框架 类别 具体项 代码场景 对各种代码场景的覆盖 过程 用例的通过率和正确率%...因此目前已经将单测生成的插件在内部进行试点使用。当然,由于内部部署的模型规模要小很多,生成效果会进一步打折。...-非本类的方法 ·静态方法调用- 项目自定义Utils ·静态方法调用-SDK类,如定时器 ·静态方法调用-枚举类 ·接口/实现的调用 ·抽象类/实体类的继承 ·异常(受检异常、非受检异常、try-catch-finally

    95510

    预测金融时间序列——Keras 中的 MLP 模型

    神经网络架构 我们将使用多层感知器作为基本模型。让我们把Keras作为一个实现框架——它非常简单、直观,你可以用它来实现相当复杂的计算图,但到目前为止我们还不需要它。...Keras 还允许我们非常灵活地控制训练过程,例如,如果我们的结果没有改善,最好减少梯度下降步骤的值——这正是 Reduce LR On Plateau 所做的,我们将其添加为回调到模型训练。...在我们的例子中,53% 的窗口属于“减少”类,47% 属于“增加”类,因此我们将尝试获得高于 53% 的准确度,这表明我们已经学会了寻找符号。...我们将从最常见的方式开始——在权重总和的L2 范数中向误差函数添加一个附加项,在Keras 中, 这是使用 keras.regularizers.activity_regularizer 完成的。...因此,值得使用近年来流行的 Dropout 技术为我们的模型添加更多的正则化——粗略地说,这是在学习过程中随机“忽略”一些权重,以避免神经元的共同适应(以便他们不学习相同的功能)。

    5.4K51

    用Keras中的权值约束缓解过拟合

    目前有多种类型的权值约束方式,比如最大向量范数和单位向量范数,其中有些方法要求用户必须配置超参数。在本教程中,作者介绍了向深度学习神经网络模型加入权值约束以缓解过拟合的 Keras API。...如何通过向一个现有的模型添加权值约束来缓解过拟合。 ?...Keras 中的权值约束 2. 神经网络层上的权值约束 3. 权值约束的案例分析 Keras 中的权值约束 Keras API 支持权值约束技术。...此外,样本中带有噪声,这让该模型有机会学习到它不能够泛化到的样本的一些特征。 过拟合的多层感知机 我们可以开发一个多层感知机模型来解决这个二分类问题。...在定义模型之前,我们将把数据集分为训练集和测试集,使用 30 个示例训练模型,70 个示例评估拟合模型的性能。

    1.1K40

    如何为Keras中的深度学习模型建立Checkpoint

    深度学习模式可能需要几个小时,几天甚至几周的时间来训练。 如果运行意外停止,你可能就白干了。 在这篇文章中,你将会发现在使用Keras库的Python训练过程中,如何检查你的深度学习模型。...Checkpoint最佳神经网络模型 如果验证精度提高的话,一个更简单的Checkpoint策略是将模型权重保存到相同的文件中。...在下面的示例中,模型结构是已知的,并且最好的权重从先前的实验中加载,然后存储在weights.best.hdf5文件的工作目录中。 那么将该模型用于对整个数据集进行预测。...在这篇文章中,你将会发现在使用Keras库的Python训练过程中,如何检查你的深度学习模型。 让我们开始吧。...在下面的示例中,模型结构是已知的,并且最好的权重从先前的实验中加载,然后存储在weights.best.hdf5文件的工作目录中。 那么将该模型用于对整个数据集进行预测。

    14.9K136

    6 种用 LSTM 做时间序列预测的模型结构 - Keras 实现

    X 每次考虑几个时间步 n_features 为每个时间步的序列数 这个是最基本的模型结构,我们后面几种模型会和这个进行比较。...= 3,因为输入有 3 个并行序列 和 Univariate 相比: 模型结构的定义中,多了一个 return_sequences=True,即返回的是序列, 输出为 Dense(n_features...X 每次考虑几个时间步 n_steps_out 为输出的 y 每次考虑几个时间步 n_features 为输入有几个序列 和 Univariate 相比: 模型结构的定义中,多了一个 return_sequences...当然这个问题还可以用 Encoder-Decoder 结构实现: # define model【Encoder-Decoder Model】 model = Sequential() model.add...为输出的 y 每次考虑几个时间步 n_features 为输入有几个序列,此例中 = 2,因为输入有 2 个并行序列 和 Univariate 相比: 模型结构的定义中,多了一个 return_sequences

    10.4K51

    MATLAB中的机器学习算法选择与模型评估

    MATLAB中的机器学习算法选择与模型评估引言机器学习是人工智能的重要组成部分,MATLAB作为一种强大的科学计算工具,提供了丰富的机器学习工具箱,使得用户能够轻松实现各种机器学习算法。...MATLAB中的机器学习工具箱MATLAB的机器学习工具箱(Statistics and Machine Learning Toolbox)提供了一系列算法和函数,用于处理分类、回归、聚类等任务。...聚类:提供k均值聚类、层次聚类等方法。模型评估:支持交叉验证、混淆矩阵、ROC曲线等评估指标。2. 数据准备在进行机器学习之前,数据的准备至关重要。通常包括数据的加载、清洗和预处理。...模型评估在模型训练完成后,评估模型的性能是非常重要的一步。我们可以使用混淆矩阵、准确率、召回率等指标。4.1 混淆矩阵混淆矩阵可以帮助我们理解模型的分类性能。...深度学习模型的保存与加载训练完毕的深度学习模型可以保存到文件中,以便后续使用。

    11110

    《揭秘机器学习中的交叉验证:模型评估的基石》

    然而,模型的性能评估绝非易事,它关乎模型能否在实际应用中发挥作用,而交叉验证则是这一过程中的关键技术,是保障模型可靠性与泛化能力的重要手段。...交叉验证的核心意义 抵御过拟合风险 在机器学习的训练过程中,模型可能会过度适应训练数据的细节和噪声,从而在新数据上表现不佳,这就是过拟合现象。...但它的缺点也很明显,计算成本极高,因为需要训练N次模型,当数据量很大时,计算负担难以承受,而且结果容易受到单个异常值的影响,若数据中存在噪声或异常点,可能会严重干扰模型评估结果。...例如,在一个正负样本比例为9:1的二分类问题中,普通K折交叉验证可能会出现某个子集中全部或几乎全部是正样本的情况,这会误导模型评估,而分层交叉验证则能有效规避此类问题,保证每个子集中都有合理的类别分布,...在机器学习的实际应用中,选择合适的交叉验证方法并正确运用,是构建高性能模型的重要环节。

    14110

    用 Keras 搭建 GAN:图像去模糊中的应用(附代码)

    这篇文章主要介绍在Keras中搭建GAN实现图像去模糊。所有的Keras代码可点击这里。 可点击查看原始出版文章和Pytorch实现。 快速回忆生成对抗网络 GAN中两个网络的训练相互竞争。...生成对抗网络训练过程— 来源 训练过程主要有三步 根据噪声,生成器合成假的输入 用真的输入和假的输入共同训练判别器 训练整个模型:整个模型中判别器与生成器连接 注意:在第三步中,判别器的权重是固定的 将这两个网络连接起来是由于生成器的输出没有可用的反馈...用生成器生成假的输入,训练判别器区别真假输入,并对整个模型进行训练。 ? 你可以参考Github来查看完整的循环。...从左到右:原始图像,模糊图像,GAN 输出 上面的输出结果都是我们用 Keras 进行 Deblur GAN 的结果。...如果你对机器视觉感兴趣,我们还写过一篇用Keras实现基于内容的图像复原 。下面是生成对抗网络资源的列表。 ?

    78121

    【Keras篇】---利用keras改写VGG16经典模型在手写数字识别体中的应用

    from keras.datasets import mnist # 加载OpenCV(在命令行中窗口中输入pip install opencv-python),这里为了后期对图像的处理, # 大家使用...这些变化是为了使图像满足VGG16所需要的输入格式 import cv2 import h5py as h5py import numpy as np # 建立一个模型,其类型是Keras的Model...类对象,我们构建的模型会将VGG16顶层(全连接层)去掉,只保留其余的网络 # 结构。...这里用include_top = False表明我们迁移除顶层以外的其余网络结构到自己的模型中 # VGG模型对于输入图像数据要求高宽至少为48个像素点,由于硬件配置限制,我们选用48个像素点而不是原来...,我们用OpenCV把图像从32*32变成224*224,把黑白图像转成RGB图像 # 并把训练数据转化成张量形式,供keras输入 (X_train, y_train), (X_test, y_test

    2.2K20

    Keras 中神经网络模型的 5 步生命周期

    在 Python 中创建和评估深度学习神经网络非常容易,但您必须遵循严格的模型生命周期。...在这篇文章中,您将发现在 Keras 中创建,训练和评估深度学习神经网络的逐步生命周期,以及如何使用训练有素的模型进行预测。...评估网络。 作出预测。 ? Keras 中神经网络模型的5步生命周期 步骤 1.定义网络 第一步是定义您的神经网络。 神经网络在 Keras 中定义为层序列。...摘要 在这篇文章中,您使用 Keras 库发现了深度学习神经网络的 5 步生命周期。 具体来说,你学到了: 如何在 Keras 中为神经网络定义,编译,拟合,评估和预测。...如何在 Keras 开发和运行您的第一个多层感知器模型。 您对 Keras 中的神经网络模型有任何疑问吗?在评论中提出您的问题,我会尽力回答。

    1.9K30

    理解目标检测模型中的性能评估

    目标检测模型通常是在一组固定的类上进行训练的,所以模型只能定位和分类图像中的那些类。 此外,目标的位置通常是边界矩形的形式。所以,目标检测涉及图像中目标的位置信息和对目标进行分类。 ?...因此,从图1中,我们可以看出它对于评估模型定位性能,目标检测模型性能和分割模型性能是有用的。 ▌评估目标检测模型 ---- ---- 为什么选择mAP?...现在,让我们假设我们有一个已经训练好的模型,我们正在验证集上评估它的结果。...我们现在计算模型得到的每个检测框(置信度阈值后)的IoU值。 使用这个值和我们的IoU阈值(比如0.5)比较,我们计算图像中每个类的正确检测次数(A)。...为了用一个单一的数字来表示一个模型的表现(一个度量来统一它们),我们取所有类的平均精度值的平均值。 这个新的价值,是我们的均值平均精度 - MAP! (非常有创意地命名,我必须说) ?

    3.1K50

    【深度学习】21个深度学习调参技巧,一定要看到最后一个

    它需要知识和经验,以适当的训练和获得一个最优模型。在这篇文章中,我想分享我在训练深度神经网络时学到的东西。以下提示和技巧可能对你的研究有益,并可以帮助你加速网络架构或参数搜索。...如果问题域中的数据集类似于ImageNet数据集,则对该数据集使用预训练模型。使用最广泛的预训练模型有VGG net、ResNet、DenseNet或Xception等。...选择一个预先训练过的模型,你认为它可以用你的超参数提供最好的性能(比如ResNet-50层)。...你可以在Keras中轻松设置权重约束: from keras.constraints import max_norm # add to Dense layers model.add(Dense(64,...这可以帮助你的网络在预测时更有信心。 12 如果你有高度不平衡的数据问题,在训练期间应用类别加权操作。换句话说,给稀少的类更多的权重,但给主要类更少的权重。使用sklearn可以很容易地计算类权重。

    1.6K20

    python机器学习基础

    通常是人工收集 二分类:一种分类任务,每个输入样本应该被划分到两个互斥的类别中 多分类:一种分类任务,每个输入样本应该被划分到多个不同的类别中,比如手写数字分类 多标签分类:一种分类任务,每个输入样本都可以分配多个标签...=0) # 假定X是个二维矩阵 X -= X.std(axis=0) 缺失值处理 在神经网络中,一般将缺失值用0填充。...特征工程 根据已有的知识对数据进行编码的转换,以改善模型的效果。 特征工程的本质:用更简单的方式表述问题,从而使得问题变得更容易。...Keras中添加权重正则化的方法是向层传递:权重正则化实例 作为关键字参数,以添加L2权重正则化为例: from keras import regularizers model = models.Sequential...添加权重正则化 添加dropout 机器学习的通用工作流程 问题定义、收集数据 选择衡量成功的标准 平衡分类问题:精度和接受者操作特征曲线下面积-ROC/AUC 分类不平衡问题:准确率和召回率 确定评估方法

    18510

    Keras中神经网络模型的5阶段生命周期

    在这篇文章中,您将了解在Keras中创建,训练和评估深度学习神经网络的模型生命周期的每一步,以及如何使用训练好的模型进行预测。...阅读这篇文章后,你会知道: 如何在Keras中定义,编译,拟合和评估深度学习神经网络。 如何为回归和分类预测建模问题选取标准默认值。...[jp0j2317q1.png] Keras中神经网络模型的5阶生命周期 第1步 定义网络 第一步是定义你的神经网络。 神经网络在Keras中的本质是一系列堆叠起来的层。...在Keras中,用这个训练好的网络模型在测试数据集上进行测试时,可以看到包括损失函数的结果在内的所有在编译时指定的测量指标的结果,比如分类的准确度。Keras会返回一个包含这些评估指标的list。...具体来说,你了解到: 如何在Keras中定义,编译,拟合,评估和预测神经网络。 如何为分类和回归问题选择激活函数和配置输出层结构。 如何在Keras开发和运行您的第一个多层感知机模型。

    3.1K90
    领券