首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

谷歌重磅发布TensorFlow Quantum:首个用于训练量子ML模型的框架

机器之心报道 机器之心编辑部 继官宣「量子优越性」之后,昨日,谷歌发布了在量子计算领域的又一重要研究:TensorFlow Quantum,这是一个用于训练量子 ML 模型的框架。 ?...TFQ 将 Criq 和 TensorFlow 相融合,提供了与现有 TensorFlow API 兼容的量子计算原语(primitives)和高性能量子电路仿真器,为判别式和生成式量子-经典模型的设计和实现提供了高级抽象...受到这些技术的启发,TFQ 库提供了开发用于解纠缠和泛化修正量子数据的模型工具。这无疑为提升现有量子算法性能,或发现新的量子算法提供了机会。 第二个需要引入的概念是量子经典混合模型。...为了构建和训练量子 ML 模型,研究人员可以执行以下操作: 准备量子数据集:量子数据作为张量(多维数组)来加载。每个量子数据张量被指定为 Cirp 库中编写的量子电路,它可以生成动态的量子数据。...对 TFQ 中量子数据的混合经典判断模型进行推理和训练,对所涉及的计算步骤进行高阶抽象概述。 TFQ 的关键功能就是能够同时训练以及执行多个量子电路。

68820

Tensorflow加载预训练模型和保存模型

大家好,又见面了,我是你们的朋友全栈君。 使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。...,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。...,只会保存变量的值,placeholder里面的值不会被保存 如果你不仅仅是用训练好的模型,还要加入一些op,或者说加入一些layers并训练新的模型,可以通过一个简单例子来看如何操作: import...只需通过graph.get_tensor_by_name()方法获取需要的op,并且在此基础上建立图,看一个简单例子,假设我们需要在训练好的VGG网络使用图,并且修改最后一层,将输出改为2,用于fine-tuning

1.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Tensorflow加载预训练模型和保存模型

    使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。...,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。...,只会保存变量的值,placeholder里面的值不会被保存 如果你不仅仅是用训练好的模型,还要加入一些op,或者说加入一些layers并训练新的模型,可以通过一个简单例子来看如何操作: import...只需通过graph.get_tensor_by_name()方法获取需要的op,并且在此基础上建立图,看一个简单例子,假设我们需要在训练好的VGG网络使用图,并且修改最后一层,将输出改为2,用于fine-tuning

    3K30

    【TensorFlow】使用迁移学习训练自己的模型

    最近在研究tensorflow的迁移学习,网上看了不少文章,奈何不是文章写得不清楚就是代码有细节不对无法运行,下面给出使用迁移学习训练自己的图像分类及预测问题全部操作和代码,希望能帮到刚入门的同学。...大家都知道TensorFlow有迁移学习模型,可以将别人训练好的模型用自己的模型上 即不修改bottleneck层之前的参数,只需要训练最后一层全连接层就可以了。...bottleneck在tensorflow主文件夹下用于保存训练数据 再建立一个空文件夹summaries用于后面使用tensorboard就ok了 训练代码 # Copyright 2015 The...如果你的路径都没有问题,按下回车就可以训练你的模型 ?...img 可以看到训练简单的猫猫狗狗还剩很轻松,正确率100% 然后可以在cmd中使用以下命令打开tensorboard来查看你的模型,xxxx是你的路径 tensorboard--logdir=C:/xxxx

    2.1K30

    Tensorflow加载预训练模型的特殊操作

    在前面的文章【Tensorflow加载预训练模型和保存模型】中介绍了如何保存训练好的模型,已经将预训练好的模型参数加载到当前网络。这些属于常规操作,即预训练的模型与当前网络结构的命名完全一致。...本文介绍一些不常规的操作: 如何只加载部分参数? 如何从两个模型中加载不同部分参数? 当预训练的模型的命名与当前定义的网络中的参数命名不一致时该怎么办?...假设修改过的卷积层名称包含`conv_,示例代码如下: import tensorflow as tf def restore(sess, ckpt_path): vars = tf.trainable_variables...如果需要从两个不同的预训练模型中加载不同部分参数,例如,网络中的前半部分用一个预训练模型参数,后半部分用另一个预训练模型中的参数,示例代码如下: import tensorflow as tf def...举个例子,例如,预训练的模型所有的参数有个前缀name_1,现在定义的网络结构中的参数以name_2作为前缀。

    2.3K271

    使用TensorFlow训练图像分类模型的指南

    转载自:51CTO技术栈原文地址:使用TensorFlow训练图像分类模型的指南众所周知,人类在很小的时候就学会了识别和标记自己所看到的事物。...下面,我将和您共同探讨计算机视觉(Computer Vision)的一种应用——图像分类,并逐步展示如何使用TensorFlow,在小型图像数据集上进行模型的训练。...通常,深度神经网络架构会提供一个输入、一个输出、两个隐藏层(Hidden Layers)和一个用于训练模型的Dropout层。...02  准备工作首先,让我们通过TensorFlow、to_categorical(用于将数字类的值转换为其他类别)、Sequential、Flatten、Dense、以及用于构建神经网络架构的 Dropout...这对于向TensorFlow框架传达输出的标签(即:0到9)为类(class),而不是数字类型,是非常重要的。05  设计神经网络架构下面,让我们来了解如何在细节上设计神经网络架构。

    1.2K01

    防止在训练模型时信息丢失 用于TensorFlow、Keras和PyTorch的检查点教程

    如果你在工作结束时不检查你的训练模式,你将会失去所有的结果!简单来说,如果你想使用你训练的模型,你就需要一些检查点。 FloydHub是一个极其易用的深度学习云计算平台。...Keras文档为检查点提供了一个很好的解释: 模型的体系结构,允许你重新创建模型 模型的权重 训练配置(损失、优化器、epochs和其他元信息) 优化器的状态,允许在你离开的地方恢复训练 同样,一个检查点包含了保存当前实验状态所需的信息...我将向你展示如何在TensorFlow、Keras和PyTorch这三个流行的深度学习框架中保存检查点: 在开始之前,使用floyd login命令登录到FloydHub命令行工具,然后复刻(fork)...最后,我们已经准备好看到在模型训练期间应用的检查点策略。...Keras提供了一个用于处理MNIST数据的API,因此我们可以在本例中跳过数据集的安装。

    3.2K51

    一行代码切换TensorFlow与PyTorch,模型训练也能用俩框架

    机器之心报道 参与:思源 你是否有时要用 PyTorch,有时又要跑 TensorFlow?这个项目就是你需要的,你可以在训练中同时使用两个框架,并端到端地转换模型。...如果我们想要在自己的项目中调用某个开源模型,那么它们最好都使用相同的框架,不同框架间的对接会带来各种问题。当然要是不怕麻烦,也可以用不同的框架重写一遍。 ?...以前 TensorFlow 和 PyTorch 经常会用来对比,讨论哪个才是更好的深度学习框架。但是它们之间就不能友好相处么,模型在两者之间的相互迁移应该能带来更多的便利。...而且比较重要的一点是,现阶段 ONNX 只支持推理,导入的模型都需要在原框架完成训练。所以,想要加入其它框架的模型,还是得手动转写成相同框架,再执行训练。...后面我们可以将该函数用于模型的某个计算部分,再进行训练也就没什么问题了。

    63330

    Tensorflow框架是如何支持分布式训练的?

    Tensorflow是目前比较流行的深度学习框架,本文着重介绍tensorflow框架是如何支持分布式训练的。...在tensorflow的术语中,模型并行称之为"in-graph replication"。 数据并行 数据并行在多个设备上放置相同的模型,各个设备采用不同的训练样本对模型训练。...异步模式训练深度学习模型存在的问题示意图 在tensorflow中异步训练是默认的并行训练模式。...Tensorflow提供了tf.train.SyncReplicasOptimizer类用于执行同步训练。通过使用SyncReplicasOptimzer,你可以很方便的构造一个同步训练的分布式任务。...函数,依然很灵活 单机和分布式代码一致,且不需要考虑底层的硬件设施 可以比较方便地和一些分布式调度框架(e.g. xlearning)结合使用 要让tensorflow分布式运行,首先我们需要定义一个由参与分布式计算的机器组成的集群

    1.4K20

    一行代码切换TensorFlow与PyTorch,模型训练也能用俩框架

    机器之心报道 参与:思源 你是否有时要用 PyTorch,有时又要跑 TensorFlow?这个项目就是你需要的,你可以在训练中同时使用两个框架,并端到端地转换模型。...如果我们想要在自己的项目中调用某个开源模型,那么它们最好都使用相同的框架,不同框架间的对接会带来各种问题。当然要是不怕麻烦,也可以用不同的框架重写一遍。 ?...以前 TensorFlow 和 PyTorch 经常会用来对比,讨论哪个才是更好的深度学习框架。但是它们之间就不能友好相处么,模型在两者之间的相互迁移应该能带来更多的便利。...而且比较重要的一点是,现阶段 ONNX 只支持推理,导入的模型都需要在原框架完成训练。所以,想要加入其它框架的模型,还是得手动转写成相同框架,再执行训练。...后面我们可以将该函数用于模型的某个计算部分,再进行训练也就没什么问题了。 ? 本文为机器之心报道,转载请联系本公众号获得授权。

    5K30

    将训练好的Tensorflow模型部署到Web站点

    通过Google发布的tensorflowjs,我们可以将训练好的模型部署到任何一个支持静态页的web服务器上,不需要任何后台服务即可运行tensorflow,部署过程非常简单。...安装tensorflowjs python万金油安装法 pip install tensorflowjs 转换模型 1 tensorflowjs_converter --input_format=keras.../models/modelforjs 后面2个参数第1个是保存好的tf模型路径,第2个参数是输出路径,会生成一个modelforjs目录,里面包含一个model.json文件和二进制数据文件 部署到Web...服务 把生成好的modelforjs拷贝到web服务上,同时引用这个jsnet/npm/@tensorflow/tfjs/dist/tf.min.js..."> 调用模型 123 var model = await tf.loadLayersModel('modelforjs/model.json'); //加载模型var predict

    1.2K20

    KDD23 交大,华为 | MAP:用于点击率预估的模型无关的预训练框架

    本文提出模型无关的预训练MAP框架,利用特征损坏和回复来进行子监督学习。...2.方法 2.1 MAP框架概览 将nlp,cv中的子监督学习引入ctr预估任务中,首先为前置任务(或者说代理任务)预训练ctr模型,然后用点击信号微调预训练模型。...预训练阶段提出了一个与模型无关的预训练(MAP)框架。模型的前置任务是从损坏的样本中恢复原始信息(例如,原始特征,损坏的字段索引)。...值得注意的是,MAP与任何神经CTR模型兼容,因为只破坏输入样本(即特征损坏层)并改变恢复目标的预测头(即特征恢复层)。最后,通过自定义特征损坏和恢复层的设计,得到两种特定的预训练算法。...用于跨域推荐的协同迁移学习框架 SIGIR 2023 | PLATE: 基于prompt增强范式下的多场景推荐

    69130

    6种用于文本分类的开源预训练模型

    迁移学习和预训练模型有两大优势: 它降低了每次训练一个新的深度学习模型的成本 这些数据集符合行业公认的标准,因此预训练模型已经在质量方面得到了审查 你可以理解为什么经过预训练的模特会大受欢迎。...它的性能超过了BERT,现在已经巩固了自己作为模型的优势,既可以用于文本分类,又可以用作高级NLP任务。...自回归模型用于预测下一个单词,使用的单词在已有的单词之前或之后出现。但是,不能同时处理前面和后面的单词,只能处理一个方向。...例如,任务1的输出用作任务1、任务2的训练;任务1和任务2的输出用于训练任务1、2和3等等 我真的很喜欢这个过程,他非常直观,因为它遵循人类理解文本的方式。...注意:这已经在TensorFlow上发布了:https://www.tensorflow.org/datasets/catalog/c4。 将要执行的任务与输入一起编码为前缀。

    2.9K10

    tensorflow版PSENet 文本检测模型训练和测试

    网络结构: 文章使用在ImageNet数据集上预训练的Resnet+fpn作为特征提取的网络结构 ?...标签生成: 为了生成训练时不同尺寸kernels所对应的ground truths,作者采用Vatti clipping algorithm将原始多边形pn缩放di个像素从而得到pi,其中每个缩放的pi...当m过大时,psenet很难区分挨得很近的文本实例,而当m过小时,psenet可能会把一个文本行分成不同部分,从而造成训练不同很好的收敛。...tensorflow版 PSENet训练和测试 项目相关代码 和预训练模型获取: 关注微信公众号 datayx 然后回复 pse 即可获取。...3.model下载下来之后没有checkpoint这个文件,自己新建一个: 模型解压后的三个文件放在resnet_v1_50文件夹下 eval.py第172行 model_path = os.path.join

    1.4K50

    转载|使用PaddleFluid和TensorFlow训练RNN语言模型

    注意:在运行模型训练之前,请首先进入 data 文件夹,在终端运行 sh download.sh 下载训练数据。...PTB数据集介绍 至此,介绍完 RNN LM 模型的原理和基本结构,下面准备开始分别使用 PaddleFluid 和 TensorFlow 来构建我们的 训练任务。...进入训练的双层循环(外层在 epoch 上循环,内层在 mini-batch 上循环),直到训练结束。 TensorFlow 1. 调用 TensorFlow API 描述神经网络模型。...同样的,我们定义了如下两个 placeholder 用于接收当前词与下一个词语: def placeholders(self): self....运行训练 运行训练任务对两个平台都是常规流程,可以参考上文在程序结构一节介绍的流程,以及代码部分:PaddleFluid vs. TensorFlow,这里不再赘述。

    71730

    使用TensorFlow训练循环神经网络语言模型

    读了将近一个下午的TensorFlow Recurrent Neural Network教程,翻看其在PTB上的实现,感觉晦涩难懂,因此参考了部分代码,自己写了一个简化版的Language Model...代码地址:Github 转载请注明出处:Gaussic 语言模型 Language Model,即语言模型,其主要思想是,在知道前一部分的词的情况下,推断出下一个最有可能出现的词。...并且使用语言模型来生成新的文本。 在本文中,我们更加关注的是,如何使用RNN来推测下一个词。 数据准备 TensorFlow的官方文档使用的是Mikolov准备好的PTB数据集。...,每个批次的训练集维度为[64, 20]。...sess.close() 需要经过多次的训练才能得到一个较为合理的结果。

    87330
    领券