在制作PowerBI报告时,一般来说,我们都会创建一些切片器。为了节省空间,一般情况下尤其是类目比较多的时候,大多采用下拉式的: ?...不过,在选项比较多的时候,当你需要查找某个或者某几个城市的销售额时,你会发现这是一件很难办的事情,比如我们要看一下青岛的销售额时: ?...你可能会来回翻好几遍才会找到,这时候再让你去找济南的销售情况,你恐怕会抓狂。 那,有没有能够在切片器中进行搜索的选项呢? 答案是:有的。 如图: ?...只要在Power BI Desktop的报告中鼠标左键选中切片器,按一下Ctrl+F即可。此时,切片器中会出现搜索框,在搜索框中输入内容点击选择即可: ?...如果想同时看青岛和济南的销售额,可以在选中青岛后,重新搜索济南,然后按住Ctrl点击鼠标左键即可: ? 发布到云端,同样也可以进行搜索: ?
DNN在搜索场景中的应用潜力,也许会比你想象的更大。 --《阿里技术》 1.背 景 搜索排序的特征在于大量的使用了LR,GBDT,SVM等模型及其变种。...在FNN的基础上,又加上了人工的一些特征,让模型可以主动抓住经验中更有用的特征。 ? ? 3. Deep Learning模型 在搜索中,使用了DNN进行了尝试了转化率预估模型。...wide model a. id feature: item_id, seller_id,学习已经出现过的商品,卖家在训练数据上的表现。...整体模型使用三层全连接层用于sparse+dense特征表征学习,再用两层全连接层用于点击/购买与否分类的统一深度学习模型解决方案: 第一层为编码层,包含商品编码,店家编码,类目编码,品牌编码,搜索词编码和用户编码...在以上的流程中,无法处理有重叠词语的两个查询短语的关系,比如“红色连衣裙”,“红色鞋子”,这两个查询短语都有“红色”这个词语,但是在往常的处理中,这两者并没有任何关系,是独立的两个查询ID,如此一来可能会丢掉一些用户对某些词语偏好的
我们要避免把这些名字中的姓,名和中间部分分开(假设这个规则适用于所有文化背景)。...如果我们能够解决两个主要问题,人名搜索的问题就解决一大半了。 作者姓名重排,无论是在文档还是查询中,有些部分都被省略了:(Doug Turnbull, D. Turnbull, D. G....] [dougl] [dougla] [douglas] 有关此过滤器(以及Solr中的许多其他过滤器)需要注意的是,每个生成的标记最终在索引文档中占据相同的位置。...Turnbull出现的每一处(以及有David G. Turnbull的地方)! 结合 好的,进入下一环节。现在用户在搜索框中输入“Turnbull,D.”。然后呢?...首先,如上所述,所有生成的标记在标记流中共享位置。所以[D.]和[Douglas]在索引文档中处于相同的位置。这意味着,当位置重要时(如在词组查询中)“D.
条件操作符用于比较两个表达式并从mongoDB集合中获取数据。...MongoDB中条件操作符有: (>) 大于 - $gt (<) 小于 - $lt (>=) 大于等于 - $gte (<= ) 小于等于 - $lte MongoDB 使用 $regex 操作符来设置匹配字符串的正则表达式...,使用PCRE (Perl Compatible Regular Expression) 作为正则表达式语言。...MongoDB OR 条件语句使用了关键字 $or 下面是具体一个PHP例子中的$filter数组: array(3) { ["$or"]=> array(2) { [0]=>
确保数据干净整洁应该始终是数据科学工作流程中首要也是最重要的部分。 数据清理是数据科学家最重要和最耗时的任务之一。以下是用于数据清理的顶级R包。 ?...它需要比这更复杂,但作为一个基本的例子,我们可以告诉R用该字段的中值替换我们字段中的所有异常值。这将把所有东西都放在一起并消除异常偏见。 缺少值 在R中检查不完整的数据并对该字段执行和操作非常简单。...这个函数允许你在R studio中编写SQL代码来选择你的数据元素 Janitor包 该软件包能够通过多个列查找重复项,并轻松地从您的数据框中创建友好列。...它甚至还有一个get_dupes()函数,用于在多行数据中查找重复值。如果您希望以更高级的方式重复数据删除,例如,查找不同的组合或使用模糊逻辑,您可能需要查看重复数据删除工具。...splitstackshape包 这是一个较旧的包,可以使用数据框列中的逗号分隔值。用于调查或文本分析准备。 R拥有大量的软件包,本文只是触及了它可以做的事情的表面。
在网络通信的世界中,TCP/IP模型以其高效和可靠性而著称。这个模型是现代互联网通信的基石,它定义了数据在网络中如何被传输和接收。其中,一个核心的概念是数据单元的层级,特别是“帧”在这个模型中的位置。...每一层都有其独特的功能和操作,确保数据可以在不同的网络设备间顺利传输。在这四层中,帧主要在网络接口层发挥作用。网络接口层,也有时被称为链路层或数据链路层,是负责网络物理连接的最底层。...在网络接口层,帧的处理涉及到各种协议和标准。例如,以太网协议定义了在局域网中帧的结构和传输方式。这些协议确保了不同厂商生产的网络设备可以相互协作,数据可以在各种网络环境中顺利传输。...虽然在高级网络编程中很少需要直接处理帧,但对这一基本概念的理解有助于更好地理解网络数据的流动和处理。例如,使用Python进行网络编程时,开发者可能会使用如socket编程库来处理网络通信。...但是,对帧在TCP/IP模型中的作用有基本的理解,可以帮助开发者更好地理解数据包是如何在网络中传输的,以及可能出现的各种网络问题。
尤其是在R包中编程改变了从ggplot2引用函数的方式,以及在aes()和vars()中使用ggplot2的非标准求值的方式。...有时候在开发R包时为了保证正常运行,不得不将依赖包列入Depdens。...常规任务最佳实践 使用ggplot2可视化一个对象 ggplot2在包中通常用于可视化对象(例如,在一个plot()-风格的函数中)。.../ 234, "r" = 25 / 234 ), class = "discrete_distr" ) R中需要的类都有plot()方法,但想要依赖一个单一的plot()为你的每个用户都提供他们所需要的可视化需求是不现实的...然而,提供一个 plot()用于一个对象的可视化总结帮助用户理解该对象是有帮助的。为了满足你的所有用户,我们建议写一个函数将这个对象转换为一个数据框(如果更加复杂,可以是包含数据框的列表)。
正则表达式的创建 在 JavaScript 中,可以通过两种方式创建一个正则表达式。...方式一:通过调用RegExp对象的构造函数创建 var regexp = new RegExp(/123/); console.log(regexp); 方式二:利用字面量创建 正则表达式 var...rg = /123/; 2.测试正则表达式 test() 正则对象方法,用于检测字符串是否符合该规则,该对象会返回 true 或 false,其参数是测试字符串。...var rg = /123/; console.log(rg.test(123));//匹配字符中是否出现123 出现结果为true console.log(rg.test('abc'));//匹配字符中是否出现
更加让笔者惊喜的是,目前vscode-R一直处于开发阶段,并且在最近的1.2.0版本结合了vscode关于web view的API,添加了R session watcher——一个集成的数据可视化构架,...并且在1.21中完善了windows系统下的extension的bug。...▶ pip install radian 四 在R中安装languageserver和jsonlite R LSP client需要借助languageserver实现函数的智能识别,R session...6 打开Terminal中输入radian此时就可以运行R script,并且用View()函数浏览数据、环境中的变量以及图片 ?...中运行的话,则会出现R session watcher不启用的状况,data和plot的review窗口则会自动调用自身gui所带的review窗口,以在windows中选择radian.exe路径为例
大家好,我是戴先生 今天给大家介绍一下如何利用玄学二分法找出目标值元素 想直奔主题的可直接看思路2 ##题目 整数数组 nums 按升序排列,数组中的值互不相同 在传递给函数之前,nums...: 将数组第一个元素挪到最后的操作,称之为一次旋转 现将nums进行了若干次旋转 给你 旋转后 的数组 nums 和一个整数 target 如果 nums 中存在这个目标值 target 则返回它的下标...这样思路就非常清晰了 在二分查找的时候可以很容易判断出 当前的中位数是在第一段还是第二段中 最终问题会简化为在一个增序数据中的普通二分查找 我们用数组[1,2,3,4,5,6,7,8,9]举例说明 target...所以可以判断出 此时mid=4是处在第一段中的 而且目标值在mid=4的前边 此时,查找就简化为了在增序数据中的查找了 以此类推还有其他四种情况: mid值在第一段,且在目标值的前边 mid值在第二段...,且在目标值的前边 mid值在第二段,且在目标值的后边 mid值就是目标值 ###代码实现2 套用二分查找的通用公式 思路2的代码实现如下 public static int getIndex(int
作者:仁重 淘宝搜索事业部 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
NLP技术在搜索推荐中的应用非常广泛,例如在搜索广告的CTR预估模型中,NLP技术可以从语义角度提取一些对CTR预测有效的信息;在搜索场景中,也经常需要使用NLP技术确定展现的物料与搜索query的相关性...今天这篇文章梳理了NLP技术在搜索推荐场景中3个方面的应用,分别是NLP提升CTR预估效果、NLP解决搜索场景相关性问题、NLP信息优化基于推荐系统效果。...首先在干净的相关性语料数据以及人工标注的高质量数据上训练BERT模型,然后利用这个模型对搜索日志中的用户行为数据打分,得到大量的包含相关性打分的数据。...4 总结 本文主要介绍了NLP技术在搜索推荐场景中的应用。...在搜索推荐中,文本信息是很常见的一种信息来源,因此如何利用文本信息提升CTR预估、推荐等模型效果,以及如何利用NLP技术解决相关性问题,都是搜推广场景中很有价值的研究点。 END
使用标准R函数和您选择的开发环境,使用CDlastic JDBC Driver for Elasticsearch分析Elasticsearch数据。...您可以在任何可以安装R和Java的计算机上使用纯R脚本和标准SQL访问Elasticsearch数据。...您可以使用适用于Elasticsearch的CData JDBC驱动程序和RJDBC软件包来处理R中的远程Elasticsearch数据。...通过使用CData驱动程序,您可以利用为经过行业验证的标准编写的驱动程序来访问流行的开源数据R语言。...类路径:将其设置为驱动程序JAR的位置。默认情况下,这是安装文件夹的lib子文件夹。 DBI函数(例如 dbConnect 和dbSendQuery )提供了用于在R中写入数据访问代码的统一接口。
文章目录 一、音频帧概念 二、AudioStreamCallback 中的音频数据帧说明 Oboe GitHub 主页 : GitHub/Oboe ① 简单使用 : Getting Started...一、音频帧概念 ---- 帧 代表一个 声音单元 , 该单元中的 采样个数 是 声道数 ; 该 声音单元 ( 帧 ) 中的 采样大小 是 样本位数 与 声道数 乘积 ; 下面的代码是 【Android...类型 ; 上述 1 个音频帧的字节大小是 2\times 2 = 4 字节 ; 二、AudioStreamCallback 中的音频数据帧说明 ---- 在 Oboe 播放器回调类 oboe::...2\times 4 = 8 字节 ; 因此在该方法中的后续采样 , 每帧都要采集 2 个样本 , 每个样本 4 字节 , 每帧采集 8 字节的样本 , 总共 numFrames 帧需要采集...numFrames 乘以 8 字节的音频采样 ; 在 onAudioReady 方法中 , 需要 采集 8 \times numFrames 字节 的音频数据样本 , 并将数据拷贝到 void
size是概率函数中的r,即连续成功的次数,prob是单词成功的概率,mu未知.....mean+3sd)几乎是在肯定的。...10.卡方分布(non-central)Chi-Squared Distribution,chisq 它广泛的运用于检测数学模型是否适合所得的数据,以及数据间的相关性。...数据并不需要呈正态分布 k个标准正态变量的平方和即为自由度为k的卡方分布。...F-分布被广泛应用于似然比率检验,特别是方差分析中 df(x, df1, df2, ncp, log = FALSE) pf(q, df1, df2, ncp, lower.tail = TRUE, log.p
文章分享了深度学习在酒店搜索NLP中的应用,并重点介绍了深度学习排序模型在美团酒店搜索的演进路线。...本文会首先介绍一下酒店搜索的业务特点,作为O2O搜索的一种,酒店搜索和传统的搜索排序相比存在很大的不同。第二部分介绍深度学习在酒店搜索NLP中的应用。...在技术层面上,也存在很多不同点。网页搜索会索引全网的数据,这些数据不是它自己生产,数据来源非常多样,包括新闻、下载页、视频页、音乐页等各种不同的形态,所以整个数据是非结构化的,差异也很大。...同义词:在北京搜索“一中”和搜索“北京第一中学”,其实都是同一个意思,需要挖掘同义词。 ?...条件随机场可以看做是逻辑回归的序列化版本,逻辑回归是用于分类的对数线性模型,条件随机场是用于序列化标注的对数线性模型,可以看做是考虑了上下文的分类模型。
前面给大家简单介绍了 ☞【R语言】R中的因子(factor) 今天我们来结合具体的例子给大家讲解一下因子在临床分组中的应用。 我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。...关于这套临床数据的下载可以参考 ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) 前面我们也给大家介绍过一些处理临床数据的小技巧 ☞【R语言】卡方检验和Fisher精确检验,复现临床paper...☞R生成临床信息统计表 ☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 接下来我们先读入临床数据 #读取临床数据 clin=read.table("clinical.tsv...参考资料: ☞【R语言】R中的因子(factor) ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) ☞【R语言】卡方检验和Fisher精确检验,复现临床paper ☞R生成临床信息统计表...☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 ☞肿瘤TNM分期 ☞R替换函数gsub
这是一般做基因差异表达分析在使用t检验或者其他统计检验中常出现的一个问题。...之前我学习和自己分析时就遇到过,尝试使用判断的方式事先检查它是不是数据存在问题(这类数据明显不服从正态分布),可以使用正态性检验,或者直接判断是不是样本组内的数据是完全一样的,如果一样就不要这个了。...以下是我的回答: 数据是恒量是无法做t检验的,因为计算公式分母为0(不懂的看下统计量t的计算公式,一般标准差/标准误为分母,所以恒量是不能算的)。...else: 统计检验 在使用t检验前尽量使用方差分析检验方差同质性。...9508518/why-are-these-numbers-not-equal https://stackoverflow.com/questions/23093095/t-test-failed-in-r
在这篇文章中,我将介绍一些我们的工作,即使用预先训练好的网络来在遥感数据的目标检测任务中避免标注大型训练数据集的大量繁琐工作。 2019年9月中旬,我参加了北欧遥感会议。...讨论的内容之一是使用为一种数据(通常是自然图像)开发和训练的神经网络,并将其应用于其他类型(遥感)数据源中的实践。...在这篇文章的其余部分,我将展示一些我们在实验室中所做的工作,这些工作是将一个在一个领域(ImageNet自然图像)训练过的网络用于在另一个领域(航拍图像)进行基于图像的搜索。...视觉搜索以及所需的训练数据 深度学习或其他机器学习技术可用于开发识别图像中物体的鲁棒方法。对于来自飞机的航拍图像或高分辨率卫星照片,这将使不同物体类型的匹配、计数或分割成为可能。...因此,在与哥本哈根市的合作中,我们朝着一种工具迈进了一步,该工具可以用于匹配所需的物体类型,而不需要预先创建训练数据。该工具基于之前的一个项目背后的技术。
,可以使用postman工具,也可以直接在浏览器中输入,如增加以下5条数据: http://localhost:6325/entityController/save?...id=5&name=中国南边好像没有叫带京字的城市了 数据插入效果如下(使用可视化插件elasticsearch-head观看): ?...数据插入效果 我们来做一下搜索的测试:例如我要搜索关键字“南京” 我们在浏览器中输入: http://localhost:6325/entityController/search?...name=南京 搜索结果如下: ? 关键字“南京”的搜索结果 刚才插入的5条记录中包含关键字“南京”的四条记录均被搜索出来了!...当然这里用的是standard分词方式,将每个中文都作为了一个term,凡是包含“南”、“京”关键字的记录都被搜索了出来,只是评分不同而已,当然还有其他的一些分词方式,此时需要其他分词插件的支持,此处暂不涉及
领取专属 10元无门槛券
手把手带您无忧上云