此处用的是过滤器方法,可自行修改 传入的参数time:1583396281 ---- function timeChange(timeValue) { timeValue = timeValue...> 60000 && timeDiffer < 3600000) { //1小时内 var returnTime = Math.floor(timeDiffer / 60000) + '分钟前'
为了从文本数据中提取有用和信息,通常需要执行几个预处理和过滤步骤。 Pandas 库有许多可以轻松简单地处理文本数据函数和方法。...在本文中,我介绍将学习 5 种可用于过滤文本数据(即字符串)的不同方法: 是否包含一系列字符 求字符串的长度 判断以特定的字符序列开始或结束 判断字符为数字或字母数字 查找特定字符序列的出现次数 首先我们导入库和数据...第一个过滤操作是检查字符串是否包含特定的单词或字符序列,使用 contains 方法查找描述字段包含“used car”的行。...下一个方法是根据字符串的长度进行过滤。假设我们只对超过 15 个字符的描述感兴趣。...df[df["lot"].str.startswith("A")] 这个方法也能够检查前 n 个字符。
想要更多的自定义选择,可以参考下面的代码。既可以在特定位置插入创建新列,也可以使用 cat 方法组合字符串(此处还可设置分隔符sep,这里并未设置)。...df["城市"] = df["户籍地址"].str.split("·", expand=True)[1] df 对字符串的另一个常见操作是筛选过滤,那么在Pandas中如何操作呢?...如果想筛选“王”字开头的姓名,既可以直接筛选 姓 这一列,也可以使用startswith()来过滤。...如果想直接筛选包含特定字符的字符串,可以使用contains()这个方法。 例如,筛选户籍地址列中包含“黑龙江”这个字符的所有行。...例如,我们可以用“str[:5]”表达式选择前8个字符,用“str[-8:]”选择后8个字符。
选择特定的列 3.读取DataFrame的一部分行 read_csv函数允许按行读取DataFrame的一部分。有两种选择。第一个是读取前n行。...例如,下面的代码将选择居住在法国并且已经流失的客户。...下面的代码将根据地理位置和性别的组合对行进行分组,然后为我们提供每组的平均流失率。...29.根据字符串过滤 我们可能需要根据文本数据(例如客户名称)过滤观察结果(行)。我已经将虚构名称添加到df_new DataFrame中。 ? 让我们选择客户名称以Mi开头的行。...endswith函数根据字符串末尾的字符进行相同的过滤。 Pandas可以对字符串进行很多操作。
利用这些数据结构以及广泛的功能,用户可以快速加载、转换、过滤、聚合和可视化数据。 Pandas与其他流行的Python库(如NumPy、Matplotlib和scikit-learn)快速集成。...() / 03 / 使用Pandas进行数据选择 Pandas提供了各种数据选择方法,允许你从DataFrame或Series中提取特定数据。...')] # 通过标签选择特定的行和列 df.loc[row_labels, column_labels] # 通过整数索引选择特定的行和列 df.iloc[row_indices, column_indices...尾空格 df['column_name'] = df['column_name'].str.strip() # 将字符串转换为小写 df['column_name'] = df['column_name...它提供了各种函数来过滤、排序和分组DataFrame中的数据。
索引值也是持久的,所以如果你对 DataFrame 中的行重新排序,特定行的标签不会改变。 5. 副本与就地操作 大多数 Pandas 操作返回 Series/DataFrame 的副本。...过滤 在 Excel 中,过滤是通过图形菜单完成的。 可以通过多种方式过滤数据框,其中最直观的是使用布尔索引。...相同的操作在下面的Pandas中表示。...按位置提取子串 电子表格有一个 MID 公式,用于从给定位置提取子字符串。获取第一个字符: =MID(A2,1,1) 使用 Pandas,您可以使用 [] 表示法按位置位置从字符串中提取子字符串。...填充柄 在一组特定的单元格中按照设定的模式创建一系列数字。在电子表格中,这将在输入第一个数字后通过 shift+drag 或通过输入前两个或三个值然后拖动来完成。
,这里说说重点 - 由于工作表中有多余的列数据,我们只需要前10列,因此指定 usecols 参数。...list(range(0,10)),其实相当于[0,1,2…………,9]的一个列表 条件过滤 先来一个超级简单例子,来看看怎么操作 Excel 的高级筛选。...pandas 中没有啥高级筛选的说法,因为他的筛选本来就很灵活,看看 pandas 的实现: - 简单易懂,都是之前文章介绍过的,这里不多说 特定值过滤 "4、5或7班的记录",Excel 高级筛选的条件区域设置如下...方法 - in [4,5,6] ,语义清晰,班级是在列表中即符合 pandas 的 query 查询可以很灵活,可以接受外部的一个列表变量,如下: - 查询字符串要使用外部变量,只需要写 "@+变量名字...- 第二句即查询,通俗易懂 "语文高于90,或者,数学高于或等于100",Excel 高级筛选的条件区域设置如下: pandas 实现如下: - query 中的查询字符串可以使用 python
Pandas库 Pandas是Python中常用的数据处理和分析库,它提供了高效、灵活且易于使用的数据结构和数据分析工具。...3.Index(索引):索引是Pandas中用于标识和访问数据的标签。它可以是整数、字符串或其他数据类型。每个Series和DataFrame对象都有一个默认的整数索引,也可以自定义索引。...4.选择和过滤数据:Pandas提供了灵活的方式来选择、过滤和操作数据。可以使用标签、位置、条件等方法来选择特定的行和列。...Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]} df = pd.DataFrame(data) 查看数据 # 查看DataFrame的前几行...df.tail() # 查看DataFrame的列名 df.columns # 查看DataFrame的索引 df.index # 查看DataFrame的统计信息 df.describe() 数据选择和过滤
“totalvotes”列显示特定状态下的投票总数。因此,下面的代码将创建一个dataframe,其中包含每个州对于每次选举的总票数。...pandas的字符串操作能够很好的来完成这个任务: first_name = winners.winner.str.rsplit(' ', n=1, expand=True)[0] last_name...每行包含获胜者的票数和特定选举在特定州的总票数。一个简单的groupby函数将为我们提供各个国家的值。...下面的groupby操作将返回基于民主党最高平均比率的前10个州。...结论 我们已经分析了美国总统选举的投票数量,每个总统在投票方面的主导地位,以及各州对民主党和共和党的投票情况。但是这篇文章的重点是练习如何将pandas用于数据分析和操作。
在 Python 中,不需要知道很多关于正则表达式的知识,但它们是一个强大的工具,可用于匹配和替换某些字符串或子字符串。如果你想了解更多,请参考以下内容。 ?...你可以将上面的代码复制粘贴到你自己的 Anaconda 中,如果你用一些 Python 代码运行,可以迭代它! 下面是代码的输出,如果你不修改它,就是所谓的字典。 ?...如果要查看特定数量的行,还可以在 head() 方法中插入行数。 ? ? 我们得到的输出是人均 GDP 数据集的前五行(head 方法的默认值),我们可以看到它们整齐地排列成三列以及索引列。...在 SQL 中,这是通过混合使用 SELECT 和不同的其他函数实现的,而在 Excel 中,可以通过拖放数据和执行过滤器来实现。 你可以使用 Pandas 库不同的方法或查询快速过滤。...我们正在努力处理 Pandas 中的过滤视图。 08 用计算机来处理数据 没有可以帮助计算不同的结果的方法,那么 Excel 会变成什么?
在 Python 中,不需要知道很多关于正则表达式的知识,但它们是一个强大的工具,可用于匹配和替换某些字符串或子字符串。如果你想了解更多,请参考以下教程。 ? 信任这个网站的一些代码。...你可以将上面的代码复制粘贴到你自己的 Anaconda 中,如果你用一些 Python 代码运行,可以迭代它! 下面是代码的输出,如果你不修改它,就是所谓的字典。 ?...如果要查看特定数量的行,还可以在 head() 方法中插入行数。 ? ? 我们得到的输出是人均 GDP 数据集的前五行(head 方法的默认值),我们可以看到它们整齐地排列成三列以及索引列。...在 SQL 中,这是通过混合使用 SELECT 和不同的其他函数实现的,而在 Excel 中,可以通过拖放数据和执行过滤器来实现。 你可以使用 Pandas 库不同的方法或查询快速过滤。...我们正在努力处理 Pandas 中的过滤视图。 用计算机来处理数据 没有可以帮助计算不同的结果的方法,那么 Excel 会变成什么?
In [1]: import pandas as pd In [2]: data = { ...: '证券名称' : ['格力电器','视觉中国','成都银行','中国联通','格力电器...如果index为3,则会将前4条记录都删除。这个方法支持一个范围,以及用负数表示从末尾删除。...删除特定数值的行(删除成交金额小于10000) In [7]: df[ df['成交金额'] > 10000] Out[7]: 成交数量 成交金额 摘要 证券名称 2018...Dataframe 2、pandas过滤包含特定字符串的行 3、Pandas dataframe怎么删除名称包含特定字符串的列?...4、Pandas Drop
Pandas[1]是用Python分析数据的工业标准。只需敲几下键盘,就可以加载、过滤、重组和可视化数千兆字节的异质信息。...类型转换 Pandas (以及Python本身)对数字和字符串有区别,所以在数据类型没有被自动检测到的情况下,可以将数字转换为字符串: pdi.set_level(df.columns, 0, pdi.get_level...它既方便又快速,但缺乏IDE的支持(没有自动完成,没有语法高亮等),而且它只过滤行,不过滤列。...考虑一下下面的例子。你希望一周中的哪几天以何种顺序出现在右表中?...),将inplace和sort参数添加到df.swaplevel中 pdi.move_level(obj, src, dst)将一个特定的级别src移动到指定的位置dst(在纯Pandas中不能轻易完成
反之,对于日期格式转换为相应的字符串形式,pandas则提供了时间格式的"dt"属性,类似于pandas为字符串类型提供了str属性及相应方法,时间格式的"dt"属性也支持大量丰富的接口。...3.分别访问索引序列中的时间和B列中的日期,并输出字符串格式 ? 03 筛选 处理时间序列的另一个常用需求是筛选指定范围的数据,例如选取特定时段、特定日期等。...实现这一目的,个人较为常用的有3种方法: 索引模糊匹配,这实际上算是pandas索引访问的一个通用策略,所以自然在时间筛选中也适用 truncate,截断函数,通过接受before和after参数,实现筛选特定范围内的数据...接受参数主要是periods:当其为正数时,表示当前值与前面的值相减的结果;反之,当其未负数时,表示当前值与后面的值相减。 ?...注意到由于窗口长度设置为3,前两条记录因为"向前凑不齐"3条,所以结果为空值。当然,就这一特定需求而言,也可由shift函数实现: ?
Pandas中实现数据过滤的方法有多种,个人常用的主要是如下3类: 通过loc定位操作符+逻辑判断条件实现筛选过滤。...但在具体使用中,where也支持两种语法形式,一种是以字符串形式传入一个类SQL的条件表达式,类似于Pandas中query;另一种是显示的以各列对象执行逻辑判断,得到一组布尔结果,类似于Pandas中...等; 接agg函数,并传入多个聚合算子,与Pandas中类似; 接pivot函数,实现特定的数据透视表功能。...在SQL中,having用于实现对聚合统计后的结果进行过滤筛选,与where的核心区别在于过滤所用的条件是聚合前字段还是聚合后字段。...而这在Pandas和Spark中并不存在这一区别,所以与where实现一致。 6)select。选择特定查询结果,详见Pandas vs Spark:获取指定列的N种方式。 7)distinct。
下面的例子展示了pandas数据框架。 DataFrame 是行和列的集合。...请看下面的表格,它比上面的例子有更多的表列: 接下来,我们将了解如何导入pandas,以及如何使用pandas创建 Series 和 dataframe 引入 Pandas import pandas...print(df.columns) # Index(['Gender', 'Height', 'Weight'], dtype='object') 现在,让我们使用列Key获取一个特定的列 heights...1990 2023 检查列值的数据类型 print(df.Weight.dtype) int64 print(df['Birth Year'].dtype) 它给出类型是字符串对象...行数据 获取最后5行数据 获得标题,数据作为一个pandas series返回 计算这个dataframe的行和列个数 过滤包含python的标题 过滤包含JavaScript的标题 尝试对数据做一些增改计算格式化等操作
注意:这里用颜色来指代数据的类型,其中红色表示字符串,绿色表示整型,而蓝色代表浮点型。...这里展示的是如何选择数据集中前5行3列的数据,如下所示: datatable_df[:5,:3] ?...▌帧排序 datatable 排序 在 datatable 中通过特定的列来对帧进行排序操作,如下所示: %%timedatatable_df.sort('funded_amnt_inv')_____...在上面的例子中,dt.f 只代表 dt_df。 ▌过滤行 在 datatable 中,过滤行的语法与GroupBy的语法非常相似。...下面就来展示如何过滤掉 loan_amnt 中大于 funding_amnt 的值,如下所示。
作者 | LeeMeng 整理 | NewBeeNLP 这一系列一共三部分,里面的一些技巧可能暂时用不上,但是相信总有一天你会接触到,建议收藏 每一小节对应代码大家可以在我共享的colab上把玩,...通过这样的方式,pandas 让你可以放心地对原始数据做任何坏坏的事情而不会产生任何不好的影响。 将字符串切割成多个列 在处理文本数据时,很多时候你会想要把一个字符串栏位拆成多个栏位以方便后续处理。...注意我们同时使用:5来选出前5个栏位。 条件选取数据 在pandas 里头最实用的选取技巧大概非遮掩(masking)莫属了。masking让pandas 将符合特定条件的样本回传: ?...选取或排除特定类型栏位 有时候你会想选取DataFrame里特定数据类型(字符串、数值、时间等)的栏位,这时你可以使用select_dtypes函数: ?...找出符合特定字串的样本 有时你会想要对一个字符串类型栏位做正则表示式(regular expression),取出符合某个pattern 的所有样本。
注意:这里用颜色来指代数据的类型,其中红色表示字符串,绿色表示整型,而蓝色代表浮点型。...这里展示的是如何选择数据集中前5行3列的数据,如下所示: datatable_df[:5,:3] ?...▌帧排序 datatable 排序 在 datatable 中通过特定的列来对帧进行排序操作,如下所示: %%time datatable_df.sort('funded_amnt_inv') ___...在上面的例子中,dt.f 只代表 dt_df。 ▌过滤行 在 datatable 中,过滤行的语法与GroupBy的语法非常相似。...下面就来展示如何过滤掉 loan_amnt 中大于 funding_amnt 的值,如下所示。
领取专属 10元无门槛券
手把手带您无忧上云