考虑将重采样为 groupby() ,在此我们可以基于任何列进行分组,然后应用聚合函数来检查结果。而在“时间序列”索引中,我们可以基于任何规则重新采样,在该 规则 中,我们指定要基于“年”还是“月”还是“天”还是其他。
从【DL笔记1】到【DL笔记N】,是我学习深度学习一路上的点点滴滴的记录,是从Coursera网课、各大博客、论文的学习以及自己的实践中总结而来。从基本的概念、原理、公式,到用生动形象的例子去理解,到动手做实验去感知,到著名案例的学习,到用所学来实现自己的小而有趣的想法......我相信,一路看下来,我们可以感受到深度学习的无穷的乐趣,并有兴趣和激情继续钻研学习。 正所谓 Learning by teaching,写下一篇篇笔记的同时,我也收获了更多深刻的体会,希望大家可以和我一同进步,共同享受AI无穷的乐趣。
我于2019年发布此篇文章至今收获了许多人的指点,当时的代码的确晦涩难懂,近期有空,将代码重新整理了一遍,重新发送至此。希望能够帮助大家更好地理解。
本次介绍pandas时间统计分析的一个高级用法--重采样。以下是内容展示,完整数据、代码和500页图文可戳👉《pandas进阶宝典V1.1.6》进行了解。
在现实世界中时间序列数据并不总是完全干净的。有些时间点可能会因缺失值产生数据的空白间隙。机器学习模型是不可能处理这些缺失数据的,所以在我们要在数据分析和清理过程中进行缺失值的填充。本文介绍了如何使用pandas的重采样函数来识别和填补这些空白。
现代气候学认为在相当长的时间段(一般认为是 30 年)中,变量多年平均是一个稳定的值。因此在一个时间段中,如果能够充分认识变量随平均状态的变化趋势,那么对于预测未来情况是非常有利的。那么这个所谓随着平均态的偏移值便可称为距平(异常,anomaly).
在 AICon 全球人工智能与机器学习技术大会(2021)北京站上,快手技术 VP 王仲远带来了主题为《Al 技术在快手短视频创作与理解的应用》的演讲,分享了快手在 AI 技术领域的实践与探索成果。本文由 InfoQ 根据王仲远的演讲内容整理,希望对你有所启发。作为国内短视频行业头部平台之一,快手有 3.2 亿日活用户,月活达 5.7 亿,此外还有 1.8 亿海外月活用户,存量短视频已达数百亿量级。在快手平台上,用户每天会花超过 100 分钟观看短视频及直播内容,用户相互关注数也超过 140 亿。
『音视频技术开发周刊』由LiveVideoStack团队出品,专注在音视频技术领域,纵览相关技术领域的干货和新闻投稿,每周一期。 策划 / LiveVideoStack 架构 Hulu 视频QoS优化策略 QoS直接关系到用户体验,如何提升QoS就成为视频平台技术实力的体现。本文来自Hulu全球高级研发经理、视频编解码与传输领域资深专家傅徳良在LiveVideoStackCon 2017上的分享。尽管Hulu提供服务的网络环境与国内大相径庭,但其相关QoS保障策略依然值得借鉴。 微博短视频服务优化实
像股票价格、每日天气、体重变化这一类,都是时序数据,这类数据相当常见,也是所有数据科学家们的挑战。
研究表明,大熊猫成为濒危物种主要是因为繁殖艰难,而繁殖难的问题主要源于「性冷淡」。
如果DataFrame结构的索引是日期时间数据,或者包含日期时间数据列,可以使用resample()方法进行重采样,实现按时间段查看员工业绩的功能。DataFrame结构的resample()方法语法为:
Pandas 是数据分析领域中最为流行的库之一,它提供了丰富的功能用于处理时间序列数据。在实际项目中,对时间序列数据的处理涉及到各种操作,包括日期解析、重采样、滑动窗口等。本篇博客将深入介绍 Pandas 中对时间序列数据的处理技术,通过实例演示如何灵活应用这些功能。
我们在使用pandas分析处理时间序列数据时,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价。
参考上图,几何图形是连续的坐标连接实现的,实际屏幕上的像素是离散化的点,分辨率越低的屏幕离散越剧烈,在图形的边缘必然会产生锯齿。
2、Gmapping基于RBpf粒子滤波算法,即将定位和建图过程分离,先进行定位再进行建图。
pandas是Python数据分析最好用的第三方库,没有之一。——笛卡儿没说过这句话!
分享一篇中稿CVPR 2021的工作,CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning[1]
这篇博客中,主要用到了pandas的数据清洗和分析工作,同时也用到了sklearn中回归预测的知识,非常的简单,但是产生了较好的预测效果。所有的数据都是可以下载的,重复这些代码也是能够完全重现以上的这些结果的,如果你有疑问,那么可以参考英文原博客[blog1] [blog2],和原作者的github可以下载完整的代码和数据, 原文: https://jakevdp.github.io/blog/2014/06/10/is-seattle-really-seeing-an-uptick-in-cycling/
这篇博客中,主要用到了pandas的数据清洗和分析工作,同时也用到了sklearn中回归预测的知识,非常的简单,但是产生了较好的预测效果。所有的数据都是可以下载的,重复这些代码也是能够完全重现以上的这些结果的,如果你有疑问,那么可以参考英文原博客[blog1] [blog2],和原作者的github可以下载完整的代码和数据, 原文: https://jakevdp.github.io/blog/2014/06/10/is-seattle-really-seeing-an-uptick-in-cycli
标题中的“完整指南”并不意味着,它有所有的可视化。在这么多不同的库中有这么多的可视化方法,所以在一篇文章中包含所有这些方法是不实际的。
Pandas 提供了强大的时间序列处理功能,使得对时间序列数据进行高级分析变得更加灵活和方便。在本篇博客中,我们将深入介绍 Pandas 中的高级时间序列分析技术,并通过实例演示如何应用这些功能。
在进行金融数据的分析以及量化研究时,总是避免不了和时间序列的数据打交道,常见的时间序列的数据有比方说一天内随着时间变化的温度序列,又或者是交易时间内不断波动的股票价格序列,今天小编就为大家来介绍一下如何用“Pandas”模块来处理时间序列的数据
重采样是时间序列分析中处理时序数据的一项基本技术。它是关于将时间序列数据从一个频率转换到另一个频率,它可以更改数据的时间间隔,通过上采样增加粒度,或通过下采样减少粒度。在本文中,我们将深入研究Pandas中重新采样的关键问题。
① FFMPEG 初始化 : 参考博客 【Android FFMPEG 开发】FFMPEG 初始化 ( 网络初始化 | 打开音视频 | 查找音视频流 )
本文介绍在ArcMap软件中,实现栅格图像重采样的具体操作,以及不同重采样方法的选择依据。
所谓的重采样,就是改变⾳频的采样率、sample format、声道数等参数,使之按照我们期望的参数输出。
AudioContext 属于 Web Audio 中的一个 API,创建音频你可以使用
在前面的连载系列中,我们分别用FFmpeg的软解和硬解两种方式解码了本地mp4文件的视频流并使用OpenGL渲染上屏
在线教育场景下的学生退课行为预测,一直是机器学习(ML)与教育(EDU)交叉领域内较为火热的研究课题。
粒子滤波是一种基于蒙特卡洛模拟的非线性滤波方法,其核心思想是用随机采样的粒子表达概率密度分布。
在从事音视频的音频开发中,难免会遇到一些问题,比如声音异常,回音等问题,这时候有比较牢固的概念基础会对分析这些问题很有帮助。本篇就介绍下音频相关的概念
如果特定情况下需要,我也可以上matlab,python,delphi,c#,c++等等。
不管是在金融学、经济学的社会学科领域,还是生态学、系统神经的自然学科领域,时间序列数据都是一种重要的结构化数据形式。
时序数据是指时间序列数据。时间序列数据是同一统一指标按时间顺序记录的数据列。在同一数据列中的各个数据必须是同口径的,要求具有可比性。时序数据可以是时期数,也可以时点数。
librosa是一个音频和音乐处理的Python包,我用它来做音频的特征提取。但是在使用时,发现librosa.load将音乐文件转化为时间序列的过程中,速度实在难以忍受,cpu跑的非常高,程序好像假死的状态。 查阅官方文档发现,默认情况下,librosa会使用scipy.signal进行音频信号的重采样,这在实际使用时是很慢的。如果要获得很高的性能,官方建议安装libsamplerate和其相应的python模块scikits.samplerate。 这就是说,在Windows下进行安装的话,要先编译libsamplerate得到相应的lib和dll文件,再安装python的接口模块。 我试着在linux下进行安装,过程是很流畅的,因为使用apt-get可以方便安装libsamplerate,pip进行scikits.samplerate安装的时候,系统可以直接找到libsamplerate编译好的lib文件。
金字塔可用于改善性能。它们是原始栅格数据集的缩减采样版本,可包含多个缩减采样图层。金字塔的各个连续图层均以 2:1 的比例进行缩减采样。如下图所示。从金字塔的底层开始每四个相邻的像素经过重采样生成一个新的像素,依此重复进行,直到金字塔的顶层。重采样的方法一般有以下三种: 双线性插值(BILINEAR)、最临近像元法(NEAREST)、三次卷积法(CUBIC)。其中最临近像元法速度最快,如果对图像的边缘要求不是很高,最适合使用该方法。三次卷积由于考虑的参考点数太多、运算较复杂等原因,速度最慢,但是重采样后图像的灰度效果较好。
2014年10月,Alexa一款名为 Echo 的智能音箱出现,智能音箱行业开始火爆并受到极大关注。2015年年底,全球智能音箱销量达到250万台。
糖尿病是全球最常见的慢性非传染性疾病之一。流行病学调查显示,我国约11%的成年人患有糖尿病,而在住院患者中这一比例更高。
亚马逊的Alexa助手最近学会了新的语言——印地语、美国西班牙语和巴西葡萄牙语。对此,亚马逊研究科学高级经理Janet Slifka今天上午在Alexa博客上发表的一篇文章中解释说:
FFmpeg在很多地方都运用了缓存机制,比如《FFmpeg开发实战:从零基础到短视频上线》一书的“3.3.2 对视频流重新编码”介绍了编解码的数据缓存,不单是视频编码过程和视频解码过程有缓存,甚至连音频重采样都用到了缓存。
对长尾数据集的tricks进行了分析和探索,并结合一种新的数据增强方法和两阶段的训练策略,取得了非常好的效果。
pandas时间序列分析的基本操作方法 ---- ---- 文章目录 导入需要的库 时间序列 生成时间序列 truncate过滤 时间戳 时间区间 指定索引 时间戳和时间周期可以转换 数据重采样 插值方法 导入需要的库 import pandas as pd import numpy as np import datetime as dt 时间序列 时间戳(timestamp) 固定周期(period) 时间间隔(interval) 生成时间序列 可以指定开始时间与周期 H:小时 D:天
定制工作时间的方法 详见 Business hour和 Custom business hour、
机器之心专栏 作者:字节跳动-火山引擎多媒体实验室 字节跳动 - 火山引擎多媒体实验室针对图像重采样模型面向图像压缩的鲁棒性,设计了一种非对称的可逆重采样框架,提出新型图像重采样模型 SAIN。 图像重采样 (Image Rescaling,LR) 任务联合优化图像下采样和上采样操作,通过对图像分辨率的下降和还原,可以用于节省存储空间或传输带宽。在实际应用中,例如图集服务的多档位分发,下采样得到的低分辨率图像往往会进行有损压缩,而有损压缩往往导致现有算法的性能大幅下降。 近期,字节跳动 - 火山引擎多媒
CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理
多重采样抗锯齿(MSAA,Multisample Anti-Aliasing)是一种用于减少图形渲染中锯齿效应的技术。
Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。
resample有一个类似于groupby的API,调用resample可以分组数据,然后会调用一个聚合函数:
领取专属 10元无门槛券
手把手带您无忧上云