首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【开源方案共享】无序点云快速的线段分割算法

    本文提出了一种基于大规模无序点云的三维线段检测算法。与传统的方法先提取三维边缘点后在拟合三维线段的算法相比,本文提出了一种基于点云分割和二维线段检测的基础上,能够快速的实现三维线段检测算法。在输入无序点云的情况下,对三维线段进行三步检测。首先,通过区域生长和区域合并将点云分割成三维平面。其次,对每个三维平面,将其所属的所有点投影到平面上形成二维图像,然后进行二维轮廓提取和最小二乘拟合得到二维线段。然后将这些二维线段重新投影到三维平面上,以获得相应的三维线段。最后,提出了一种剔除异常点和合并相邻三维线段的后处理方法。在多个公共数据集上的实验证明了该方法的有效性和鲁棒性。

    02

    带你玩转 3D 检测和分割(一):MMDetection3D 整体框架介绍

    由于 3D 本身数据的复杂性和 MMDetection3D 支持任务(点云 3D 检测、单目 3D 检测、多模态 3D 检测和点云 3D 语义分割等)和场景(室内和室外)的多样性,整个框架结构相对复杂,新人用户的上手门槛相对较高。所以我们推出新的系列文章,让各个细分方向的用户都能轻松上手 MMDetection3D,基于框架进行自己的研究和开发。在系列文章的初期,我们会先带大家了解整个框架的设计流程,分析框架中的各种核心组件,介绍数据集的处理方法,然后再对各个细分任务及经典模型进行具体细节的代码层级介绍。同时也欢迎大家在评论区提出自己的需求,我们会收集各位的反馈补充更多的文章教程 ~

    02

    基于点云 / RGBD的3D视觉检测技术

    3D视觉技术相较于2D视觉能获取更丰富更全面的环境信息,已经成为机器人导航、无人驾驶、增强/虚拟现实、工业检测等领域的关键技术.当前基于2D的的计算机视觉技术日趋成熟,在很多领域取得了很不错的进展,但我们真实的世界是三维空间,利用2D的技术对真实世界进行建模存在先天的缺陷——深度信息缺失,我们不能从2D图片中获得物体的绝对尺度和位置,而这一点在点云中不会存在问题.“从单幅图像到双目视觉的3D目标检测算法”介绍了基于单目(monocular)视觉以及双目(binocular)视觉的3D目标检测算法,单目做3D检测完全是数据驱动,通过机器学习模型结合摄影几何的约束去拟合3D空间的数据分布;双目视觉会有额外的视差信息,可以重建出景深信息,所以可以得到比单目视觉更强的空间约束关系,在3D目标检测任务重的精度相比单目会更好.

    02

    汇总|基于3D点云的深度学习方法

    三维数据通常可以用不同的格式表示,包括深度图像、点云、网格和体积网格。点云表示作为一种常用的表示格式,在三维空间中保留了原始的几何信息,不需要任何离散化。因此,它是许多场景理解相关应用(如自动驾驶和机器人)的首选表示。近年来,深度学习技术已成为计算机视觉、语音识别、自然语言处理、生物信息学等领域的研究热点,然而,三维点云的深度学习仍然面临着数据集规模小、维数高、非结构化等诸多挑战三维点云。在此基础上,本文对基于点云数据下的深度学习方法最新进展做了详解,内容包括三维形状分类、三维目标检测与跟踪、三维点云分割三大任务。

    02

    汇总|基于3D点云的深度学习方法

    三维数据通常可以用不同的格式表示,包括深度图像、点云、网格和体积网格。点云表示作为一种常用的表示格式,在三维空间中保留了原始的几何信息,不需要任何离散化。因此,它是许多场景理解相关应用(如自动驾驶和机器人)的首选表示。近年来,深度学习技术已成为计算机视觉、语音识别、自然语言处理、生物信息学等领域的研究热点,然而,三维点云的深度学习仍然面临着数据集规模小、维数高、非结构化等诸多挑战三维点云。在此基础上,本文对基于点云数据下的深度学习方法最新进展做了详解,内容包括三维形状分类、三维目标检测与跟踪、三维点云分割三大任务。

    02
    领券