在计算机监控软件中,滤波算法可是个非常重要的技术,它的任务是处理监控数据里烦人的噪声和那些没用的东西,然后提高数据的质量和准确性。对于电脑监控软件来说,滤波算法的性能分析和优化也是至关重要的,这两个可是能让软件跑得更快、更稳定的关键。下面就来给大家介绍一下相关的性能分析与优化方法:
Y值越大,越稀释边缘像素的差异,各个点的权重就更接近,可以想象:当Y无限大时,每个点的权重几乎等于1,就没有保边的效果
单片机主要作用是控制外围的器件,并实现一定的通信和数据处理。但在某些特定场合,不可避免地要用到数学运算,尽管单片机并不擅长实现算法和进行复杂的运算。下面主要是介绍如何用单片机实现数字滤波。
一阶滤波,又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC低通滤波器的功能。
卡尔曼滤波(Kalman Filtering)是一种用于状态估计和信号处理的全局最优滤波器。它基于状态空间模型,通过将观测数据和模型进行融合,实现对未知变量和噪声的估计。在Matlab中,我们可以使用内置的kalman滤波函数来实现Kalman滤波算法。 本文将介绍如何在Matlab中使用Kalman滤波器对数据进行滤波和估计。
Created with Raphaël 2.2.0 开始 选择正交变换,把时域信号转变为变换域信号 变换后的信号用其能量的平方根归一化 采用某一自适应算法进行滤波 结束
滤波算法是一类用于处理信号和图像中噪声的算法。它们通常通过在信号或图像上应用一个滤波器来实现这一目的。常见的滤波算法包括均值滤波、中值滤波、高斯滤波等。
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
(本文为笔者早期所写,当时对卡尔曼滤波器理解尚未透彻,如今回顾,该模型还有所缺陷,推荐读者看卡尔曼的推导过程或者B站大佬Dr_CAN的空间)
保边滤波器的代表包括双边滤波、引导滤波,但是这类滤波器有一个问题,它们均将待处理的像素点放在了方形滤波窗口的中心。但如果待处理的像素位于图像纹理或者边缘,方形滤波核卷积的处理结果会导致这个边缘变模糊。
图像处理算法和技术在计算机视觉和图像处理领域发挥着重要作用,通过对图像进行分析、增强和转换,可以提取出有用的信息并解决实际问题。本文将以图像处理算法和技术的应用实践为中心,为你介绍一些常见的图像处理算法和技术,并通过实例展示它们在实际应用中的应用和效果。
卡尔曼滤波是一种基于概率论和线性代数的算法,用于处理具有随机噪声的动态系统。其基本思想是将系统的状态表示为一个随机变量,并通过观测数据和模型方程来对该随机变量进行估计和预测。
粒子滤波(particle filter)是一种常见的滤波算法,广泛应用于目标跟踪、移动机器人等领域。网络上有不少关于粒子滤波的资料,但大多是直接给出了粒子滤波的相关公式和证明,或较为直观上的解释。作者在学习粒子滤波的过程中对一些概念和操作时常感到突兀,后来发现想要完整了解粒子滤波,需要首先了解前因,逐渐深入才能理解粒子滤波,而不是直接学习粒子滤波这个方法。
摘 要: 无线充电Qi协议提出发射器和接收器通过频率调制(FSK)方式进行正向通信,进而建立完整的通信状态控制。接收器可采用测宽法进行频率解调,然而由于电磁耦合变化、负载变化、载波占空比变化、测量量化等引起的误差,该方法无法满足实际应用的要求。该文针对传统测宽法抗干扰能力弱的问题,提出一种窗口滤波算法,通过参考相邻脉冲频率确定当前脉冲的有效频率,极大地提高了测宽法的抗干扰能力。经实例分析,改进后的测宽法抗干扰能力强、逻辑简单,为无线充电正向通信FSK解调提供一种可行的方法。
摘要:将视觉SLAM(同步定位与地图创建)方法应用于水下环境时,扬起的沉积物会导致SLAM特征点提取与追踪困难,而且人工光源的光照不均匀还会引起特征点分布不均与数量较少。针对这些问题,设计了一种水下图像半均值滤波除尘与光照均衡化特征增强算法;根据水中杂质的像素特征,按照“检测-滤波”的顺序采取从外至内的半均值滤波过程消除扬起的沉积物在图像内造成的干扰;同时,通过统计光照均匀、充足区域内的像素分布,得到同一地形下不同位置处的环境特征相似的规律,并将其用于求解水下光照模型,将图像还原为光照均衡的状态,以此来增强图像的特征,进而实现更多有效特征点的提取。最后,利用该滤波与增强算法对多种海底地形数据集进行处理,并在ORB-SLAM3算法下测试运行。结果表明,滤波与增强后的数据集能够将特征点提取数量和构建地图的点云数量平均提高200%。综上,图像滤波除尘与特征增强算法能够有效提高视觉SLAM算法的运行效果与稳定性。
最近在做一个基于蓝牙的室内定位的项目,做了一个三角定位算法,由于室内的环境比较复杂,信号反射折射比较多,很多时候信号的大小(RSSI)跟距离并不是完全一一对应的,可能远的地方信号反而更强,三角质心定位算法就有点不合适了,因此想试用指纹定位算法,看一下指纹定位算法的效果。在此总结一下指纹定位算法。
距离上一篇文到现在有十天左右了,现在我又来更新啦!现在正值我们专业课程多的一个学期,还赶上疫情在家学习效率低,所以没能有精力写推文了,不过幸好大家都还在,我会一直更新的。
在获取点云数据时 ,由于设备精度,操作者经验环境因素带来的影响,以及电磁波的衍射特性,被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中讲不可避免的出现一些噪声。在点云处理流程中滤波处理作为预处理的第一步,对后续的影响比较大,只有在滤波预处理中将噪声点 ,离群点,孔洞,数据压缩等按照后续处理定制,才能够更好的进行配准,特征提取,曲面重建,可视化等后续应用处理,PCL中点云滤波模块提供了很多灵活实用的滤波处理算法,例如:双边滤波,高斯滤波,条件滤波,直通滤波,基于随机采样一致性滤波, PCL中点云滤波的方案 PCL中总结了几种需要进行点云滤波处理情况,这几种情况分别如下: (1) 点云数据密度不规则需要平滑 (2) 因为遮挡等问题造成离群点需要去除 (3) 大量数据需要下采样 (4) 噪声数据需要去除 对应的方案如下: (1)按照给定的规则限制过滤去除点 (2) 通过常用滤波算法修改点的部分属性 (3)对数据进行下采样 双边滤波算法是通过取临近采样点和加权平均来修正当前采样点的位置,从而达到滤波效果,同时也会有选择剔除与当前采样点“差异”太大的相邻采样点,从而保持原特征的目的
最近有点忙,今天水一下。来为大家介绍一个之前看到的一个有趣的常量阶最大值最小值滤波算法,这个算法可以在对每个元素的比较次数不超过3次的条件下获得任意半径区域内的最大值或者最小值,也即是说可以让最大最小值滤波算法的复杂度和半径无关。
图像处理应用是计算机视觉和图像处理领域的关键应用之一,通过对图像进行处理和分析,可以提取有用的信息、改善图像质量、实现目标检测等功能。然而,在实际应用中,优化和改进图像处理应用功能是一个持续的过程。本文将以优化和改进图像处理应用功能为中心,为你介绍一些常见的方法和实践,帮助你提升应用的性能、效果和用户体验。
双边滤波是一种非线性滤波器,它可以达到保持边缘、降噪平滑的效果。和其他滤波原理一样,双边滤波也是采用加权平均的方法,用周边像素亮度值的加权平均代表某个像素的强度,所用的加权平均基于高斯分布[1]。最重要的是,双边滤波的权重不仅考虑了像素的欧氏距离(如普通的高斯低通滤波,只考虑了位置对中心像素的影响),还考虑了像素范围域中的辐射差异(例如卷积核中像素与中心像素之间相似程度、颜色强度,深度距离等),在计算中心像素的时候同时考虑这两个权重。 公式1a,1b给出了双边滤过的操作,Iq为输入图像,Ipbf为滤波后图像:
均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
数据可视化一词缘于Python的流行,在Python中有诸如pyecharts,matplotlib等工具库可以调用,将一堆数据绘制成形象的图表,比如条形图,饼图等等,可以一眼就看出数据的变化趋势。
惯性传感器在航空航天系统中主要用于姿态控制和导航。微机电系统的进步促进了微型惯性传感器的发展,该装置进入了许多新的应用领域,从无人驾驶飞机到人体运动跟踪。在捷联式 IMU 中,角速度、加速度、磁场矢量是在传感器固有的三维坐标系中测量的数据。估计传感器相对于坐标系的方向,速度或位置,需要对相应的传感数据进行捷联式积分和传感数据融合。在传感器融合的研究中,现已提出了许多非线性滤波器方法。但是,当涉及到大范围的不同的动态/静态旋转、平移运动时,由于需要根据情况调整加速度计和陀螺仪融合权重,可达到的精度受到限制。为克服这些局限性,该项研究利用人工神经网络对常规滤波算法的优化和探索。
引导图滤波器是一种自适应权重滤波器,能够在平滑图像的同时起到保持边界的作用,具体公式推导请查阅原文献《Guided Image Filtering》以及matlab源码:http://kaimingh
移动机器人定位是确定其在未知环境中所处位置的过程,是实现移动机器人自动导航能力的关键。依据机器人所采用传感器类型的不同,其定位方式有所不同。目前应用较广泛的传感器有里程计、超声波、激光器、摄像机、红外
很多在工业现场调试设备的同行都会遇到干扰问题,马达、电焊机、高频电气装置、电器开关等都会给数据采集通道带来很多高频干扰。
在进行AD采样时,常常都会对采样数据进行滤波,以达到更好一点的效果。下面分享几种较简单而常用的滤波算法:
高斯滤波是以距离为权重,设计滤波模板作为滤波系数,只考虑了像素间的空间位置上的关系,因此滤波的结果会丢失边缘的信息。
图像预处理算法的好坏直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,为了获取高质量的数字图像,很多时候都需要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。
其中,横轴表示X[0,0],即位置p; 纵轴表示X[1,0],即速度v 可以看到速度v很快收敛于1.0,这是因为设置delta_t=1,即Z中的数据从0-500,每秒加1,卡尔曼滤波预测的速度与实际速度1.0很好的契合。 并且,我相信如果将横轴展开来看,卡尔曼滤波也对位置的预测具有很好的契合。
看完本篇文章的所有操作和实践,就不需要去花钱修复照片了自己也能做到而且保证十分便捷!本篇文章将介绍常用到的图像去噪滤波算法,采用实例代码和处理效果一并展现的方式进行介绍,能够更直观的看到每种算法的效果。本篇文章偏实战,所以不会涉及到过多每种算法的原理理论计算公式,以一篇文章快速了解并实现这些算法,以效率最高的方式熟练这些知识。
针对稳态视觉诱发电位(steady-state visual evoked potential, SSVEP)识别面临的校准数据不足的问题,天津大学神经工程团队提出了一种源混叠矩阵估计方法(source aliasing matrix estimation, SAME)来扩增SSVEP信号的校准数据。在Benchmark和BETA公开数据集上的结果表明,当与SAME方法结合后,两种先进的空间滤波方法(eTRCA, TDCA)在校准数据不足的情况下均有显著的性能提高。SAME可以有效扩增基于稳态视觉诱发电位的脑机接口系统的校准数据,从而减少系统的校准负担,相关研究成果在实用型脑机接口方面具有潜在的应用价值,已在线发表至《IEEE Transactions on Biomedical Engineering》期刊。
首先要做的是最简单的均值滤波算法。均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围 8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
形态学滤波(二) 之Tophat滤波 Tophat滤波变换实际上是原图像与“开运算”的结果图之差。算法的数学表达式如下: 因为开运算带来的结果是放大了裂缝或者局部低亮度的区域。从原图中减去开运算后图像
恩智浦的MPC5744P,含有的ADC子模块有四个,我们使用ADC0的通道0,和ADC1的通道0来做电流的同步采样,通过PWM触发CTU,CTU事件触发ADC电流采样,在CTU的中断中去获取电流的ADC值,经过滤波后就可以做电流算法的闭环控制,这个芯片的ADC 有两种模式。
自从发表了用于验证码图片识别的类(C#代码)后,不断有网友下载这个类后,问如何用于一些特定的验证码。总结一下网友们的提问,很多都是不会从复杂背景中提到干净的字符图片来,这主要就是一个去噪问题,即除去图片上的背景、干扰点、干扰线等信息。这当中要用到很多图像学数学算法,首先声明,本人不是学图像学的,以下方法理论说得不对,敬请多批评指正。 1、如何设前景/背景的分界值 UnCodebase类中有一个GetPicValidByValue( int dgGrayValue) 函数,可以得到前景的有效区域,常有
点云滤波不同于图像滤波,它指的是将原始激光雷达点云数据分为地面点和地物点的二分类过程。由于PCL点云库具备易用、且实现了大多数点云处理算法,我们使用PCL中的渐进形态学滤波算法对点云进行滤波:
本篇推文,是从一场比赛中学到的一些方法与技巧,分享给公众号的读者们!本文是预测因子的一部分内容。
我们知道View中封装了一些动画和显示效果那我们为什么还要操作CALayer层面上呢?
刚开始看到这篇论文的时候,我就很感兴趣想去复现一把看看效果。这篇论文是今年 CVPR oral 且不是深度学习方向的,其核心贡献点就是:不管原来的滤波器保不保边,运用了side-window思想之后,都可以让它变成保边滤波! 论文地址为:https://arxiv.org/pdf/1905.07177.pdf
本文主要提出了一个基于纯MLP架构的序列化推荐模型,其通过可学习滤波器对用户序列进行编码,在8个序列化推荐数据集上超越了Transformer等模型。
本节将介绍自动驾驶汽车的定位技术下,包括:激光雷达定位和视觉定位,以及Apollo框架是如何解决定位问题的。
卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
卡尔曼滤波器是传感器融合工程师用于自动驾驶汽车的工具。想象一下,你有一个雷达传感器,告诉你另一辆车距离15米,一个激光传感器说车辆距离20米。你如何协调这些传感器测量?这就是卡尔曼滤波器的功能。卡尔曼滤波在自动驾驶汽车上的应用十分广泛,本文讲述卡尔曼滤波算法,希望对你有所帮助。
图像平滑是一个重要的操作,而且有多种成熟的算法。这里主要简单介绍一下Bilateral方法(双边滤波),这主要是由于前段时间做了SSAO,需要用bilateral blur 算法进行降噪。Bilateral blur相对于传统的高斯blur来说很重要的一个特性即可可以保持边缘(Edge Perseving),这个特点对于一些图像模糊来说很有用。一般的高斯模糊在进行采样时主要考虑了像素间的空间距离关系,但是却并没有考虑像素值之间的相似程度,因此这样我们得到的模糊结果通常是整张图片一团模糊。Bilateral blur的改进就在于在采样时不仅考虑像素在空间距离上的关系,同时加入了像素间的相似程度考虑,因而可以保持原始图像的大体分块进而保持边缘。在于游戏引擎的post blur算法中,bilateral blur常常被用到,比如对SSAO的降噪。
最近业余在研究物体追踪,看到传统的方法用到了卡尔曼滤波(Kalman Filter)+匈牙利算法做轨迹匹配,因而开始研究这两种算法是如何实现的。这里简单总结一下卡尔曼滤波算法探索的过程。
我近期发表了一篇文章79. 三维重建14-立体匹配10,经典视差优化算法Fast Bilateral-Space Stereo
领取专属 10元无门槛券
手把手带您无忧上云