首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    高效备考方法-程序填空题

    1. 程序填空题占18分,一般有3个空需要填写; 2. 填空题做题之前必须弄清题目含义,抓住关键字,例如:要求对数组进行从小到大排序, 则将会出现大于符号,如果是从大到小排序则出现小于符号; 3. 填空题中出现频率最高的就是函数的调用、函数的首部、函数的返回值等和函数相关的问题,因此必须牢牢掌握函数的基本特征; 4. 填空题中有的“空”比较难,考生除了掌握必须的C语言知识之外,还需要很好的逻辑思路,如果一个空将花很多时间来解决,那么建议使用“死记硬背”的方法来缩短复习时间;(不建议所有题死记答案) 5. 上机题库中100多题,有部分题目是重复的或是相似的题目很多,同学们要使用比对的方法尽量去理解; 6. 多练习,多思考,多总结

    02

    Must Know! 数据科学家们必须知道的 5 种聚类算法

    聚类是一种关于数据点分组的机器学习技术。给出一组数据点,我们可以使用聚类算法将每个数据点分类到特定的组中。理论上,同一组中的数据点应具有相似的属性或特征,而不同组中的数据点应具有相当不同的属性或特征(即类内差异小,类间差异大)。聚类是一种无监督学习方法,也是一种统计数据分析的常用技术,被广泛应用于众多领域。 在数据科学中,我们可以通过聚类算法,查看数据点属于哪些组,并且从这些数据中获得一些有价值的信息。今天,我们一起来看看数据科学家需要了解的 5 种流行聚类算法以及它们的优缺点。 一、K 均值聚类 K-

    08

    人脑hub枢纽和功能连接的时间动态性

    神经成像技术观察到大脑网络连接的枢纽hub,普遍认为枢纽对建立和维持一个功能平台至关重要,在这个平台上可以发生有认知意义和高效的神经元交流。然而,枢纽是静态的(即大脑区域始终是枢纽),还是这些属性会随时间变化(即大脑区域的枢纽波动),我们知之甚少。为了解决这个问题,我们引入了两个新的方法概念,脑连接流和节点惩罚最短路径,然后应用于时变功能连接fMRI BOLD数据。我们表明,激活的枢纽以一种非平凡的方式随时间而变化,枢纽的活动依赖于研究的时间尺度。激活的枢纽数量中较慢的波动超过了预期的程度,这主要是在皮层下结构检测到的。此外,我们观察到枢纽活动的快速波动主要存在于默认模式网络中,这表明大脑连接中的动态事件。我们的结果表明,连接枢纽的时间行为是一个多层次和复杂的问题,必须考虑到特定方法对时变连接性的时间敏感性的特性。我们讨论的结果与正在进行的讨论有关,即静息大脑中存在离散和稳定状态,以及网络枢纽在为神经元跨时间通信提供支架方面的作用。

    00
    领券