湖仓一体是指将仓储和物流的功能整合在一起,以提高仓储效率和降低成本。在云计算领域,可以通过以下方法实现湖仓一体:
推荐的腾讯云相关产品和产品介绍链接地址:
问题导读 1.什么是数据仓库、数据集市和数据湖? 2.湖仓一体化为什么诞生? 3.湖仓一体化是什么? 4.湖仓一体化的好处是什么?...0.沃尔玛纸尿裤和啤酒 在了解湖仓一体化之前,我们先来看一则有关数据仓库的有趣故事吧~ 沃尔玛拥有世界上最大的数据仓库系统,它利用数据挖掘方法对交易数据进行分析后发现"跟尿布一起购买最多的商品竟是啤酒...由于这些原因,数据湖的许多功能尚未实现,并且在很多时候丧失了数据湖的优势。 2.湖仓一体化为什么诞生?...一种常见的解决方案是结合数据湖和数据仓库优势,建立湖仓一体化,进而解决了数据湖的局限性:直接在用于数据湖的低成本存储上实现与数据仓库中类似的数据结构和数据管理功能。...是否能有一种方案同时兼顾数据湖的灵活性和云数据仓库的成长性,将二者有效结合起来为用户实现更低的总体拥有成本?那么湖仓一体化就是答案! 3.湖仓一体化是什么?
解决数据湖挑战的方法是lakehouse,它通过在上面添加事务存储层来解决数据湖的挑战。一个lakehouse,使用类似于数据仓库的数据结构和数据管理功能,但直接在云数据湖上运行。...五、汽车之家湖仓一体架构实践案例分享 以下文字来源DataFunTalk,介绍了如何基于Apache Iceberg构建湖仓一体架构,将数据可见性提升至分钟级;从多维分析的角度来探讨引入Apache Iceberg...02 基于 Iceberg 的湖仓一体架构实践 湖仓一体的意义就是说我不需要看见湖和仓,数据有着打通的元数据的格式,它可以自由的流动,也可以对接上层多样化的计算生态。 ——贾扬清 1....总结 通过对湖仓一体、流批融合的探索,我们分别做了总结。 湖仓一体 Iceberg 支持 Hive Metastore; 总体使用上与 Hive 表类似:相同数据格式、相同的计算引擎。...架构收益 - 准实时数仓 上方也提到了,我们支持准实时的入仓和分析,相当于是为后续的准实时数仓建设提供了基础的架构验证。准实时数仓的优势是一次开发、口径统一、统一存储,是真正的批流一体。
本文主要介绍为了应对以上挑战,我们在湖仓一体方向上的一些探索和实践。 Why?为什么需要湖仓一体 在讨论这个问题前,我们可能首先要明确两个概念:什么是数据湖?什么是数据仓库?...湖仓一体是近两年大数据一个非常热门的方向,如何在同一套技术架构上同时保持湖的灵活性和仓的高效性是其中的关键。...在开源社区领域,Iceberg、Hudi、DeltaLake等项目的出现也为在SQL on Hadoop的数据湖技术方案上实现湖仓一体提供了基础的技术储备。...我们基于Iceberg构建了我们的湖仓一体架构,在具体介绍B站的湖仓一体架构之前,我觉得有必要先讨论清楚两个问题,为什么Iceberg可以构建湖仓一体架构,以及我们为什么选择Iceberg?...为了解决以上问题,我们引入了Bit-sliced Encoded Bitmap实现。具体详情可查询参考文献[2](通过索引加速湖仓一体分析)。
通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。...基于 Apache Doris 的湖仓一体架构快手基于 Apache Doris 升级为湖仓一体分析平台,新架构如图所示:从下至上,主要分为以下几个层级:数据加工层:数据源数据同步到数据湖仓(Hive/...接下来重点介绍整个湖仓一体架构中,缓存服务和自动物化服务方面的功能和实践经验。...结束语引入 Apache Doris,使快手成功从湖仓分离架构升级到湖仓一体架构。...同时,结合 Doris 的物化视图改写能力和自动物化服务,可实现高性能的数据查询以及灵活的数据治理。后续,快手将会进一步探索 Doris 在湖仓一体下的应用实践。
为此,这篇文章我们将主要分析: 1、数据仓、数据湖、湖仓一体究竟是什么? 2、架构演进,为什么说湖仓一体代表了未来? 3、现在是布局湖仓一体的好时机吗?...01:数据湖+数据仓≠湖仓一体 在湖仓一体出现之前,数据仓库和数据湖是被人们讨论最多的话题。 正式切入主题前,先跟大家科普一个概念,即大数据的工作流程是怎样的?...依据DataBricks公司对Lakehouse 的定义,湖仓一体是一种结合了数据湖和数据仓库优势的新范式,在用于数据湖的低成本存储上,实现与数据仓库中类似的数据结构和数据管理功能。...这里需要注意的是,“湖仓一体”并不等同于“数据湖”+“数据仓”,这是一个极大的误区,现在很多公司经常会同时搭建数仓、数据湖两种存储架构,一个大的数仓拖着多个小的数据湖,这并不意味着这家公司拥有了湖仓一体的能力...在此前与滴普科技的合作中,百丽国际就已经完成了统一数仓的搭建,实现了多个业务线的数据采集和各个业务域的数据建设。
其次,您可以订阅数据湖仓服务,例如软件即服务 (SaaS)。 本文将深入探讨这两种类型的数据湖仓部署的特征,介绍 Cloudera 新的一体化湖仓产品 CDP One 的优势。...SaaS 数据湖仓 软件即服务 (SaaS) 数据湖仓部署是作为服务提供的交钥匙解决方案。例如,最近发布的 CDP One数据湖仓一体化是一种在云中运行的 SaaS 产品(亚马逊网络服务)。...安全:CDP One 是一种单租户云架构 SaaS,可实现对 Cloudera 数据平台的私有和安全访问。CDP One 参与行业认证和认证计划,为我们的运营、基础设施和安全控制提供最高水平的保证。...数据湖仓一体的好处 运营可用于生产的数据湖仓可能具有挑战性。挑战包括部署和维护数据平台以及管理云计算成本。...CDP One 是一种一体化数据湖仓软件即服务 (SaaS) 产品,可对任何类型的数据进行快速简便的自助分析和探索性数据科学。
随着技术的不断发展,我们预计湖仓一体化将在未来的企业数据战略中扮演越来越重要的角色。 具体怎么实现湖仓一体? 既然湖仓一体这么好,那么,应该怎么样来实现湖仓一体呢?...实现湖仓一体化是一个综合性的挑战,涉及到从技术选型到架构设计,再到数据治理和集成的多个方面,下面我们将详细探讨如何实现这一复杂过程的每个关键步骤。 1....确定业务需求和目标 实现湖仓一体化的首要步骤,是明确企业的业务需求和目标,这包括理解企业希望通过一体化实现的具体业务目标,如提高数据分析的效率、降低成本或改善数据治理。...架构设计 在选择合适的技术平台和供应商之后,设计一个能够同时支持数据湖和数据仓库操作的统一架构,是实现湖仓一体化的关键。...当然,湖仓一体的技术创新才刚刚开始,未来还有很长的路要走。 展望未来,湖仓一体化预计将在多个维度实现技术革新和进步。
Hudi介绍 概述 架构图 核心概念 Timeline 文件布局 索引 表类型与查询 COW类型表详解 MOR类型表详解 流实时摄取 Frog造数程序 Structured Streaming 湖仓一体...它可以实现文件级别的数据自动更新,而无需重新整个表或者分区 能够实现更小消耗的增量更新,而无需扫描整个表或者分区 严格控制文件大小,并保证更高的查询性能(小文件过多会严重降低查询性能) MOR类型表详解...MOR类型表是COW类型表更高级的实现,其实,对应到源码中,它是COW表的子类。...此外,它会将Upsert的操作存储在基于行的增量日志存储中,通过这样方式,MOR表可以用Delta Log来实现快照查询。...hudiTableName}") .awaitTermination() } } 运行 启动HDFS集群 启动Hive MetaStore和HiveServer2 启动造数程序 湖仓一体
在了解湖仓一体化之前,我们先来看一则有关数据仓库的有趣故事吧~ 沃尔玛拥有世界上最大的数据仓库系统,它利用数据挖掘方法对交易数据进行分析后发现"跟尿布一起购买最多的商品竟是啤酒!...由于这些原因,数据湖的许多功能尚未实现,并且在很多时候丧失了数据湖的优势。 02 数据湖+数据仓=湖仓一体? 在湖仓一体出现之前,数据仓库和数据湖是被人们讨论最多的话题。...一种常见的解决方案是结合数据湖和数据仓库优势,建立湖仓一体化,进而解决了数据湖的局限性:直接在用于数据湖的低成本存储上实现与数据仓库中类似的数据结构和数据管理功能。...而使用湖仓一体,就能实现数据湖和数仓之间的无缝流转,打通了数据存储和计算的不同的层面。 2、灵活性与成长性兼得 通过上面这张图,可知灵活性和成长性,对于处于不同时期的企业来说,重要性不同。...是否能有一种方案同时兼顾数据湖的灵活性和云数据仓库的成长性,将二者有效结合起来为用户实现更低的总体拥有成本?那么湖仓一体化就是答案! 04 什么是湖仓一体化?
湖仓一体 - Apache Arrow的那些事 Arrow是高性能列式内存格式标准。...本文关注arrow执行器式如何实现高性能。...两者的主要区别在于,Arrow 社区提供的工具主要是提供API和各种语言的高性能实现,而 Gandiva 生成的 LLVM 形式则是通过编译源代码来实现高效的数据处理。...Acero基本流程: 1)创建一组Declaration对象,描述该执行计划 2)调用DeclarationToXyz方法执行该Declaration (1)根据Declarations创建一个新的ExecPlan...同时依赖于使用哪种DeclarationToXyz方法,添加一个sink节点 (2)执行ExecPlan。
为此,可通过建设实时数仓解决上述问题,实时数仓在离线数仓基础上进一步满足时效性的要求,依托流批一体、湖仓一体、云计算等技术,兼具时效性和灵活性优势,可作为金融业实时数据的生产、存储和使用平台。...同时,随着Hudi、Iceberg、Delta Lake等数据湖技术发展,依托数据湖底座的湖仓一体实时数仓建设正在兴起,对推进企业数字化转型具有重要价值: • 一是弥补现有架构的不足,湖仓一体实时数仓弥补了传统数仓对于数据实时处理能力的不足...实时数仓建设关键技术 3.1 实时数据入湖 实时数据入湖是湖仓一体实时数仓数据模型建设的基础,与流计算模式下“即用即弃”的数据处理策略不同,湖仓一体实时数仓借助Hudi数据湖存储引擎对实时流数据进行摄入存储...5.1 持续稳定的实时数据供给 实时数仓基于湖的平台化实时集成能力,可以实现对丰富的实时流数据集成,降低各类实时应用实时数据集成建设成本;同时依托数据湖流批一体存储特性,以实现时间旅行等一些新特性,满足可靠性要求等场景...下一步,实时数仓将深度融入到湖仓一体建设,借助现代数据栈,实现统一数据血缘、安全管控、服务共享等,助力农业银行企业级实时数据应用生态发展。
数据仓库存储结构化的数据,适用于快速的BI和决策支撑,而数据湖可以存储任何格式的数据,往往通过挖掘能够发挥出数据的更大作为,因此在一些场景上二者的并存可以给企业带来更多收益。...湖仓一体,又被称为Lake House,其出发点是通过数据仓库和数据湖的打通和融合,让数据流动起来,减少重复建设。...Lake House架构最重要的一点,是实现数据仓库和数据湖的数据/元数据无缝打通和自由流动。...湖里的“显性价值”数据可以流到仓里,甚至可以直接被数仓使用;而仓里的“隐性价值”数据,也可以流到湖里,低成本长久保存,供未来的数据挖掘使用。...湖仓一体技术借助海量、实时、多模的数据处理能力,实现全量数据价值的持续释放,正成为企业数字化转型过程中的备受关注焦点。
数据湖适合存储非结构化的、信息密度低的、未经清洗的数据。例如生产中我们获取到的日志信息、长文本信息等都可以直接放到数据湖中。 曾经有一段时间,大家对于大数据的存储形式分裂为了两派。...不断询问是选择数据湖,还是选择数据仓库? 选择数据湖,才能拥有数据的多样与灵活,有利于将不同的数据组合在一起,发现新的规律。...湖仓一体,即打通数据仓库和数据湖两套体系,让数据和计算在湖和仓之间自由流动,从而构建一个完整的有机的大数据技术生态体系。...下面这份PPT材料来自DAMA中国,专题分享活动《湖仓一体,构建企业数字化新基座》,作者数据科学家毛亮坚老师,主要介绍了大数据平台架构演进、详细阐述湖仓一体架构构建与探索思路、湖仓一体化平台应用实践案例...、最后提出了湖仓一体化平台未来发展趋势,推荐给大家阅读。
六、阿里云湖仓一体方案 1. 整体架构 阿里云MaxCompute在原有的数据仓库架构上,融合了开源数据湖和云上数据湖,最终实现了湖仓一体化的整体架构(图11)。...针对第五章提出的湖仓一体的三个关键问题,MaxCompute实现了以下4个关键技术点。...2)统一数据/元数据管理 MaxCompute实现湖仓一体化的元数据管理,通过DB元数据一键映射技术,实现数据湖和MaxCompute数仓的元数据无缝打通。...MaxCompute实现湖仓一体化的存储访问层,不仅支持内置优化的存储系统,也无缝的支持外部存储系统。既支持HDFS数据湖,也支持OSS云存储数据湖,可读写各种开源文件格式。...构建湖仓一体化的数据中台 基于MaxCompute湖仓一体技术,DataWorks可以进一步对湖仓两套系统进行封装,屏蔽湖和仓异构集群信息,构建一体化的大数据中台,实现一套数据、一套任务在湖和仓之上无缝调度和管理
然而,这种方法可能会导致数据重复,成本高昂。 成本效益:湖仓一体通过利用低成本的对象存储选项来实现数据湖的经济高效的存储功能。...易于数据版本控制、治理和安全性:数据湖仓一体架构强制实施架构和数据完整性,从而更容易实现强大的数据安全和治理机制。 3.7 湖仓一体的缺点 湖仓一体的主要缺点是它仍然是一项相对较新且不成熟的技术。...您很可能会使用一个为支持开放的数据湖仓一体架构而构建的平台。因此,请确保在购买之前研究每个平台的不同功能和实现。 5.1 了解您的核心用户 当涉及到数据仓库与数据湖时,"一刀切"并不适用。...5.4 融合和最新产品创新 湖仓一体本身是一项相对较新的创新。随着实时分析数据流的兴起,这种混合方法可能会在未来几年变得更加流行,并且与各行业的数据团队相关。...假设数据仓库和数据湖方法不能满足您公司的数据需求,或者您正在寻找对数据实施高级分析和机器学习工作负载的方法。在这种情况下,湖仓一体是一个合理的选择。 6.
数据湖仓一体能够存储以前存在于仓库和湖中的所有数据,无需维护多个数据副本。在Uber这意味着我们可以毫不拖延地运行欺诈模型,实现当日向司机付款。...然而实现如此强大的结果不仅仅是选择表格格式或编写作业或 SQL 的练习;它需要一个平衡良好、经过深思熟虑的数据架构模式,并考虑到未来。我将这种架构称为“通用数据湖仓一体”。...通用数据湖仓一体架构使数据可以跨所有主要数据仓库和数据湖查询引擎进行访问,并与任何目录集成,这与之前将数据存储与一个计算引擎相结合的方法发生了重大转变。...为了实现数据新鲜度和效率的最佳组合,组织应选择非常适合流式处理和增量处理的数据湖仓一体技术。...这种方法比许多公司目前维护的混合架构更简单、更快速、成本更低。它实现了存储和计算的真正分离,同时支持在数据中使用同类最佳计算引擎的实用方法。
此前Apache Hudi社区一直有小伙伴询问能否使用Amazon Redshift(数仓)查询Hudi表,现在它终于来了。...现在您可以使用Amazon Redshift查询Amazon S3 数据湖中Apache Hudi/Delta Lake表数据。...Amazon Redshift Spectrum作为Amazon Redshift的特性可以允许您直接从Redshift集群中查询S3数据湖,而无需先将数据加载到其中,从而最大限度地缩短了洞察数据价值时间...bucket/prefix/partition-path' Apache Hudi最早被AWS EMR官方集成,然后原生集成到AWS上不同云产品,如Athena、Redshift,可以看到Hudi作为数据湖格式层衔接了云原生数据湖与数据仓库...,可用于打造湖仓一体底层通用格式,Hudi生态也越来越完善,也欢迎广大开发者参与Apache Hudi社区,一起建设更好的数据湖,Github传送门:https://github.com/apache/
就数据流向来看,数据仓库的数据可以基于数据湖整理,那么一个很自然的想法就是将数据湖和数据仓库的融合在一起,实现“既能存又能算”,也就是所谓的“湖仓一体”。 那么现在实现的咋样呢?...,由于具备了一定的“实时”数据湖数据处理能力,因此现在把这种实现(更多是架构上的)称为湖仓一体。...这里尤其注意的是,使用 SPL 存储整理后数据仍然存放在文件系统中,理论上可以与数据湖存放一处,这样可以实现真正意义的湖仓一体。...,即通过 SPL 完全接管原来数据仓库的工作,这样在一个体系内就实现了湖仓一体。...在数据湖中全面实现一体化数仓可不是说说而已。
估值或达380亿美元;各大伺机而动的云厂商也纷纷推出自己的数据湖、云数据仓库、湖仓一体产品。...以下讨论数据湖、数据仓库、湖仓一体都是基于用户的数据是海量且复杂多元的。...以下列举了业界实现的方案阿里云 MaxCompute + Hologres图片阿里云 EMR + Sarrocks图片华为云 湖仓一体图片字节跳动 基于Doris的湖仓一体探索图片字节跳动-火山引擎 湖仓一体云服务图片...链接5 4万字全面掌握数据库、数据仓库、数据集市、数据湖、数据中台。链接6 大数据发展20年,“仓湖一体”是终局?链接7 B站基于Iceberg的湖仓一体架构实践。链接8 亚马逊湖仓一体。...链接9 构建切实有效的湖仓一体架构。 链接
以下讨论数据湖、数据仓库、湖仓一体都是基于用户的数据是海量且复杂多元的。...湖仓价值的交点 (以上图片来自阿里云) How:业界怎么做湖仓一体?...真实业务场景可能是同一套架构里面会支持上述两种实现。也有一些湖仓一体的架构中没有数据仓库产品,仅用了Presto作为查询加速(火山引擎、Bilibili),不过整体架构大致也差不多。...以下列举了业界实现的方案: 阿里云 MaxCompute+Hologres 阿里云 EMR+Sarrocks 华为云 湖仓一体 字节跳动 基于Doris的湖仓一体探索 字节跳动-火山引擎 湖仓一体云服务...7.B站基于Iceberg的湖仓一体架构实践 8.亚马逊湖仓一体 9.构建切实有效的湖仓一体架构 作者简介 叶强盛 腾讯云开发者社区【技思广益·腾讯技术人原创集】作者 腾讯后台开发工程师,目前负责腾讯天穹大数据
领取专属 10元无门槛券
手把手带您无忧上云