湖仓一体大数据云是一个涵盖湖仓一体大数据处理、存储、分析、可视化、智能应用等一系列服务的云计算解决方案。它可以帮助企业实现数据的全面、准确、快速地获取和分析,从而更好地支持决策和创新。
湖仓一体大数据云的优势在于:
湖仓一体大数据云的应用场景包括:
推荐的腾讯云相关产品和产品介绍链接地址:
问题导读 1.什么是数据仓库、数据集市和数据湖? 2.湖仓一体化为什么诞生? 3.湖仓一体化是什么? 4.湖仓一体化的好处是什么?...可见大数据其实很早之前就已经伴随在我们的日常生活之中了。 那么接下来我们就来了解一下湖仓一体化的基本概念吧。 1.什么是数据仓库、数据集市和数据湖?...随着当前大数据技术应用趋势,企业对单一的数据湖和数仓架构并不满意。...4.湖仓一体化的好处是什么? 湖仓一体能发挥出数据湖的灵活性与生态丰富性,以及数据仓库的成长性与企业级能力。...而数据湖则往往使用大数据文件系统和Spark在廉价的硬件上存储计算数据。湖仓一体架构的目标就是结合这些技术来最大力度降低成本。
前言这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司Databricks...从What描述中数据湖和数据仓库的描述可以看出,业内常用的大数据架构基本上就是湖仓一体,即拓宽的数据仓库的功能,也会主动的规范数据的存储和使用。...以下列举了业界实现的方案阿里云 MaxCompute + Hologres图片阿里云 EMR + Sarrocks图片华为云 湖仓一体图片字节跳动 基于Doris的湖仓一体探索图片字节跳动-火山引擎 湖仓一体云服务图片...链接5 4万字全面掌握数据库、数据仓库、数据集市、数据湖、数据中台。链接6 大数据发展20年,“仓湖一体”是终局?链接7 B站基于Iceberg的湖仓一体架构实践。链接8 亚马逊湖仓一体。...链接9 构建切实有效的湖仓一体架构。 链接
引言 这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司...从What描述中数据湖和数据仓库的描述可以看出,业内常用的大数据架构基本上就是湖仓一体,即拓宽的数据仓库的功能,也会主动的规范数据的存储和使用。...湖仓价值的交点 (以上图片来自阿里云) How:业界怎么做湖仓一体?...、方案、场景以及建湖全过程 5.4万字全面掌握数据库、数据仓库、数据集市、数据湖、数据中台 6.大数据发展20年,“仓湖一体”是终局?...7.B站基于Iceberg的湖仓一体架构实践 8.亚马逊湖仓一体 9.构建切实有效的湖仓一体架构 作者简介 叶强盛 腾讯云开发者社区【技思广益·腾讯技术人原创集】作者 腾讯后台开发工程师,目前负责腾讯天穹大数据
五、汽车之家湖仓一体架构实践案例分享 以下文字来源DataFunTalk,介绍了如何基于Apache Iceberg构建湖仓一体架构,将数据可见性提升至分钟级;从多维分析的角度来探讨引入Apache Iceberg...02 基于 Iceberg 的湖仓一体架构实践 湖仓一体的意义就是说我不需要看见湖和仓,数据有着打通的元数据的格式,它可以自由的流动,也可以对接上层多样化的计算生态。 ——贾扬清 1....流批一体: 在流批一体的理念下,Flink 的优势会逐渐体现出来。 12....总结 通过对湖仓一体、流批融合的探索,我们分别做了总结。 湖仓一体 Iceberg 支持 Hive Metastore; 总体使用上与 Hive 表类似:相同数据格式、相同的计算引擎。...架构收益 - 准实时数仓 上方也提到了,我们支持准实时的入仓和分析,相当于是为后续的准实时数仓建设提供了基础的架构验证。准实时数仓的优势是一次开发、口径统一、统一存储,是真正的批流一体。
本文主要介绍为了应对以上挑战,我们在湖仓一体方向上的一些探索和实践。 Why?为什么需要湖仓一体 在讨论这个问题前,我们可能首先要明确两个概念:什么是数据湖?什么是数据仓库?...湖仓一体是近两年大数据一个非常热门的方向,如何在同一套技术架构上同时保持湖的灵活性和仓的高效性是其中的关键。...B站的湖仓一体实践 对于B站的湖仓一体架构,我们想要解决的问题主要有两个:一是鉴于从Hive表出仓到外部系统(ClickHouse、HBase、ES等)带来的复杂性和存储开发等额外代价,尽量减少这种场景出仓的必要性...我们基于Iceberg构建了我们的湖仓一体架构,在具体介绍B站的湖仓一体架构之前,我觉得有必要先讨论清楚两个问题,为什么Iceberg可以构建湖仓一体架构,以及我们为什么选择Iceberg?...具体详情可查询参考文献[2](通过索引加速湖仓一体分析)。
为此,这篇文章我们将主要分析: 1、数据仓、数据湖、湖仓一体究竟是什么? 2、架构演进,为什么说湖仓一体代表了未来? 3、现在是布局湖仓一体的好时机吗?...01:数据湖+数据仓≠湖仓一体 在湖仓一体出现之前,数据仓库和数据湖是被人们讨论最多的话题。 正式切入主题前,先跟大家科普一个概念,即大数据的工作流程是怎样的?...相比于数据仓库,数据湖是一种不断演进中、可扩展的大数据存储、处理、分析的基础设施。...这里需要注意的是,“湖仓一体”并不等同于“数据湖”+“数据仓”,这是一个极大的误区,现在很多公司经常会同时搭建数仓、数据湖两种存储架构,一个大的数仓拖着多个小的数据湖,这并不意味着这家公司拥有了湖仓一体的能力...02:为什么说湖仓一体是未来? 回归开篇的核心问题:湖仓一体凭什么能代表未来? 关于这个问题,我们其实可以换一个问法,即在数据智能时代,湖仓一体会不会成为企业构建大数据栈的必选项?
其次,您可以订阅数据湖仓服务,例如软件即服务 (SaaS)。 本文将深入探讨这两种类型的数据湖仓部署的特征,介绍 Cloudera 新的一体化湖仓产品 CDP One 的优势。...PaaS 数据湖仓 平台即服务 (PaaS) 数据湖仓是在您的云帐户中配置的数据湖仓的虚拟化部署。Cloudera 数据平台 (CDP) 公共云是 PaaS 数据湖仓的一个示例。...SaaS 数据湖仓 软件即服务 (SaaS) 数据湖仓部署是作为服务提供的交钥匙解决方案。例如,最近发布的 CDP One数据湖仓一体化是一种在云中运行的 SaaS 产品(亚马逊网络服务)。...数据湖仓一体的好处 运营可用于生产的数据湖仓可能具有挑战性。挑战包括部署和维护数据平台以及管理云计算成本。...CDP One 是一种一体化数据湖仓软件即服务 (SaaS) 产品,可对任何类型的数据进行快速简便的自助分析和探索性数据科学。
因此,湖仓一体化应运而生,旨在将数据仓库的结构化分析能力与数据湖的存储灵活性无缝结合,为企业提供一个综合的数据管理方案。 接下来,我们就湖仓一体进行更深入的分析。...现实的业务需求,逼着他们追求湖仓一体。 湖仓一体化策略的关键,在于它整合了数据仓库的高效、结构化查询处理能力,和数据湖的大规模、多样化数据存储能力。...随着技术的不断发展,我们预计湖仓一体化将在未来的企业数据战略中扮演越来越重要的角色。 具体怎么实现湖仓一体? 既然湖仓一体这么好,那么,应该怎么样来实现湖仓一体呢?...在国内市场,湖仓一体服务商大致可以分为5类: 云厂商:云厂商以阿里云、腾讯云、百度云、华为云、火山引擎等; 数据库厂商:镜舟科技、达梦数据、人大金仓等; 大数据基础软件厂商:星环科技为典型代表; 数据仓库厂商...当然,湖仓一体的技术创新才刚刚开始,未来还有很长的路要走。 展望未来,湖仓一体化预计将在多个维度实现技术革新和进步。
Hudi介绍 概述 架构图 核心概念 Timeline 文件布局 索引 表类型与查询 COW类型表详解 MOR类型表详解 流实时摄取 Frog造数程序 Structured Streaming 湖仓一体...而Hudi将流处理引入到大数据中,在更短地时间内提供新的数据,比传统批处理效率高几个数量级。 数据库可以通过工具将数据实时同步到Kafka、或者使用Sqoop批量导出的方式导出到DFS。...hudiTableName}") .awaitTermination() } } 运行 启动HDFS集群 启动Hive MetaStore和HiveServer2 启动造数程序 湖仓一体...DataSourceOptions.scala 配置项请参考:http://hudi.apache.org/docs/configurations.html#read-options 推荐阅读 触宝科技基于Apache Hudi的流批一体架构实践...Apache Hudi在Hopsworks机器学习的应用 通过Z-Order技术加速Hudi大规模数据集分析方案 实时数据湖:Flink CDC流式写入Hudi Debezium-Flink-Hudi
随着当前大数据技术应用趋势,企业对单一的数据湖和数仓架构并不满意。...而数据湖则往往使用大数据文件系统和Spark在廉价的硬件上存储计算数据。湖仓一体架构的目标就是结合这些技术来最大力度降低成本。...07 湖仓一体落地路径与成本 A:现在大多数企业都已经有了自己的一套大数据架构,他们如何基于已有的架构落地湖仓一体?有哪些可行的落地路径?成本可能主要会来自哪里?...这通常要看企业是不是希望在大数据技术栈上做更多投入。如果企业觉得没必要在基础设施上投很多资源,而是要把更多资源放在业务上,那选一个更偏全托管版的湖仓一体解决方案更有价值。...现在是采用湖仓一体的好时机吗? Q:现在大多数企业都还没有用到湖仓一体的新架构,他们要么选择了数据湖方案,要么选择了数仓方案。湖仓一体作为一个新兴架构,很多企业目前还在早期探索阶段。
作为天然的数据密集型行业,金融行业一直以来都在实践和推动大数据技术的创新发展,伴随着计算场景和需求越来越多元,能兼容众多技术优势的“湖仓一体”大数据架构悄然成为金融行业潮流。...腾讯云大数据的 TBDS 湖仓一体方案深度融合了数据湖和数据仓库的技术,构建了高性能的数据存储、计算、分析平台。...该方案具备湖仓一体、流批一体的公司级高性能、多级多租户的大数据统一存储、计算、分析平台,并通过WeData 一站式开发治理工具链平台,解决数据开发、管理多平台分离问题。...为解决传统数据处理模式的挑战,该企业与腾讯云大数据合作,基于TBDS 平台的Iceberg数据湖、StarRocks 等技术栈实现湖仓一体新架构转型。...基于湖仓一体技术架构,该大型保险企业成功实现了数据治理和业务创新,为金融行业树立了智能化升级的新标杆。除此之外,越来越多的企业正在腾讯云大数据的支持下,加快数字化转型。
轻松入门大数据:玩转Flink,打造湖仓一体架构在当今大数据时代,数据成为了企业的重要资产。如何高效地处理、存储和分析这些数据,成为了企业面临的重要挑战。...Flink作为一款高性能的流处理框架,与湖仓一体架构的结合,为企业提供了一种全新的解决方案。本文将深入探讨如何轻松入门大数据,玩转Flink,打造湖仓一体架构。...一、湖仓一体架构简介湖仓一体架构是一种将数据湖(Data Lake)和数据仓库(Data Warehouse)融合在一起的架构模式。...三、打造湖仓一体架构要打造湖仓一体架构,首先需要选择一个合适的数据湖存储系统,如Hadoop HDFS、AWS S3等。然后,需要选择一个高性能的流处理框架,如Flink,来实现数据的实时处理和分析。...四、总结湖仓一体架构与Flink的结合为企业提供了一种高效、灵活的大数据解决方案。通过玩转Flink和打造湖仓一体架构,企业可以轻松地处理和分析各种类型的数据,从而挖掘出更多的商业价值。
通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。...基于 Apache Doris 的湖仓一体架构快手基于 Apache Doris 升级为湖仓一体分析平台,新架构如图所示:从下至上,主要分为以下几个层级:数据加工层:数据源数据同步到数据湖仓(Hive/...接下来重点介绍整个湖仓一体架构中,缓存服务和自动物化服务方面的功能和实践经验。...结束语引入 Apache Doris,使快手成功从湖仓分离架构升级到湖仓一体架构。...后续,快手将会进一步探索 Doris 在湖仓一体下的应用实践。
湖仓一体 - Apache Arrow的那些事 Arrow是高性能列式内存格式标准。
为此,可通过建设实时数仓解决上述问题,实时数仓在离线数仓基础上进一步满足时效性的要求,依托流批一体、湖仓一体、云计算等技术,兼具时效性和灵活性优势,可作为金融业实时数据的生产、存储和使用平台。...同时,随着Hudi、Iceberg、Delta Lake等数据湖技术发展,依托数据湖底座的湖仓一体实时数仓建设正在兴起,对推进企业数字化转型具有重要价值: • 一是弥补现有架构的不足,湖仓一体实时数仓弥补了传统数仓对于数据实时处理能力的不足...• 三是提升企业级数据分析整合能力,湖仓一体实时数仓打破了数据湖与数据仓库割裂的体系,将数据湖的灵活性、数据多样性以及丰富的生态与数据仓库的企业级数据分析能力进行了融合。...实时数仓建设思路 自农业银行大数据平台建设以来,经过多年的不断发展,沉淀了丰富的离线数仓模型资产,具备PB级数据存储和处理能力,支撑数百个应用场景。...实时数仓建设关键技术 3.1 实时数据入湖 实时数据入湖是湖仓一体实时数仓数据模型建设的基础,与流计算模式下“即用即弃”的数据处理策略不同,湖仓一体实时数仓借助Hudi数据湖存储引擎对实时流数据进行摄入存储
数据仓库存储结构化的数据,适用于快速的BI和决策支撑,而数据湖可以存储任何格式的数据,往往通过挖掘能够发挥出数据的更大作为,因此在一些场景上二者的并存可以给企业带来更多收益。...湖仓一体,又被称为Lake House,其出发点是通过数据仓库和数据湖的打通和融合,让数据流动起来,减少重复建设。...Lake House架构最重要的一点,是实现数据仓库和数据湖的数据/元数据无缝打通和自由流动。...湖里的“显性价值”数据可以流到仓里,甚至可以直接被数仓使用;而仓里的“隐性价值”数据,也可以流到湖里,低成本长久保存,供未来的数据挖掘使用。...湖仓一体技术借助海量、实时、多模的数据处理能力,实现全量数据价值的持续释放,正成为企业数字化转型过程中的备受关注焦点。
例如我们通过大数据分析得到的关联信息、画像信息等,都可以放在数据仓库中。 “仓库”一词也将它的特点表现得清清楚楚。仓库,东西要放在规整的货架上,甚至还会给货架编号。...数据湖适合存储非结构化的、信息密度低的、未经清洗的数据。例如生产中我们获取到的日志信息、长文本信息等都可以直接放到数据湖中。 曾经有一段时间,大家对于大数据的存储形式分裂为了两派。...湖仓一体,即打通数据仓库和数据湖两套体系,让数据和计算在湖和仓之间自由流动,从而构建一个完整的有机的大数据技术生态体系。...下面这份PPT材料来自DAMA中国,专题分享活动《湖仓一体,构建企业数字化新基座》,作者数据科学家毛亮坚老师,主要介绍了大数据平台架构演进、详细阐述湖仓一体架构构建与探索思路、湖仓一体化平台应用实践案例...、最后提出了湖仓一体化平台未来发展趋势,推荐给大家阅读。
/EMR DataLake的湖仓一体方案做一介绍。...五、下一代演进方向:湖仓一体 经过对数据湖和数据仓库的深入阐述和比较,本文认为数据湖和数据仓库作为大数据系统的两条不同演进路线,有各自特有的优势和局限性。...所以我们提出下一代的大数据技术演进方向:湖仓一体,即打通数据仓库和数据湖两套体系,让数据和计算在湖和仓之间自由流动,从而构建一个完整的有机的大数据技术生态体系。...4)自动数仓 湖仓一体需要用户根据自身资产使用情况将数据在湖和仓之间进行合理的分层和存储,以最大化湖和仓的优势。...构建湖仓一体化的数据中台 基于MaxCompute湖仓一体技术,DataWorks可以进一步对湖仓两套系统进行封装,屏蔽湖和仓异构集群信息,构建一体化的大数据中台,实现一套数据、一套任务在湖和仓之上无缝调度和管理
领取专属 10元无门槛券
手把手带您无忧上云