湖仓一体化是一种供应链管理方法,它将产品从生产到销售的整个过程集成在一起,以提高效率和减少成本。在这种模式下,生产商、仓储商和零售商可以共享信息和资源,以便更快地响应市场变化。
湖仓一体化的优势包括提高库存积压能力、减少库存成本、提高库存周转率、减少运输成本和提高客户满意度。
湖仓一体化的应用场景包括零售、物流、医疗保健、制造业和电子商务等行业。
推荐的腾讯云相关产品和产品介绍链接地址:
在大模型时代,企业将如何进行湖仓一体化架构选型?下一代Lakehouse架构方向又在哪里?未来面临着怎么样的挑战?...让我们在6月15日举办的以「大模型时代的 OLAP 技术演进」为主题的第58届DataFunSummit:OLAP 线上峰会中,「Lakehouse 湖仓一体化架构」论坛上看头部企业如何做!...精彩内容,扫码报名,免费参会 本次Lakehouse湖仓一体化架构论坛的出品人程力老师,腾讯云数据湖存储的负责人,他对数据湖仓存储架构有着深入的理解与丰富的实践经验。...演讲议题:下一代湖仓加速存储 GooseFS 在实时 OLAP 搜索场景中的实践与优化 演讲嘉宾:于飏 腾讯云 COS 对象存储团队资深高级工程师 个人介绍:硕士毕业于西安电子科技大学,一直专注云端对象存储相关技术的研发工作...演讲摘要:腾讯云对象存储中心推出的 GooseFS 加速存储产品,从最初加速湖仓应用场景下的海量吞吐与数据本地化调度,已经扩展演进到了实时 OLAP 引擎场景。
此过程不用执行扫描整个源表的查询 Hudi的优势 •HDFS中的可伸缩性限制•Hadoop中数据的快速呈现•支持对于现有数据的更新和删除•快速的ETL和建模 以上内容主要引用于:《Apache Hudi 详解》 新架构与湖仓一体...通过湖仓一体、流批一体,准实时场景下做到了:数据同源、同计算引擎、同存储、同计算口径。...实时数仓的每一层结果数据会准实时的落一份到离线数仓,通过这种方式做到程序一次开发、指标口径统一,数据统一。...本节内容,引用自:《37 手游基于 Flink CDC + Hudi 湖仓一体方案实践》 最佳实践 版本搭配 版本选择,这个问题可能会成为困扰大家的第一个绊脚石,下面是hudi中文社区推荐的版本适配:...Chan 的提点,可能是 checkpoint的问题,于是做了设置 set execution.checkpointing.interval=10sec; 终于正常了 致此,Flink + Hudi 仓湖一体化方案的原型构建完成
一 数据是数字化转型的基础和引擎 数据湖是支撑企业数字化转型的数据底座,是提供数据驱动、精准决策的全方位技术支撑。 数据价值将经历数据统一化、数据资产化、数据业务化、数据生态化四个阶段。...2.数据湖 数据湖(Data Lake)是一个存储企业的各种各样原始数据的大型仓库,其中的数据可供存取、处理、分析及传输。数据湖的本质是由“➊数据存储架构+➋数据处理工具”组成的解决方案。...3.湖仓一体 湖仓一体架构最重要的一点,是实现“湖里”和“仓里”的数据/元数据能够无缝打通,并且“自由”流动。...湖里的“新鲜”数据可以流到仓里,甚至可以直接被数仓使用,而仓里的“不新鲜”数据,也可以流到湖里,低成本长久保存,供未来的数据挖掘使用。...1+N数据湖体系:1个数据湖,N个租户、N个数据仓库、N个数据集市、N个数据创新实验室。
,故大量未变化的历史冷数据会被重复存储多份,带来存储浪费; 为了解决上述问题,保证数仓的降本提效目标,我们决定引入数据湖来重构数仓架构,具体如下: •业务数据源实时接入Kafka,Flink接Kafka...构建ODS实时增量数据层,实时ODS增量层主要作用有两方面:•依赖ODS实时增量数据(保留原始格式,不做清洗转化)每日离线入湖来构建ODS层离线湖仓,ODS层数据后续作为业务数据的备份、满足DWD层全量数据重做需求...Hudi可以很好的在任务执行过程中进行小文件合并,大大降低了文件治理的复杂度,依据业务场景所需要的原子语义、小文件管理复杂度以及社区活跃度等方面综合考量,我们选择Hudi来进行湖仓一体化改造。 3....鉴于目前业务实时需求并不是很高,故华米数仓在引入数据湖时暂采取Hudi + Spark离线更新模式来构建湖仓ODS原始层和DWD明细层,从测试对比和上线情况来看,收益总结如下: 4.1 成本方面 引入Hudi...总结与展望 从数据湖上线和测试过程来看,目前数据湖能解决我们的一些数仓痛点,但是依然存在一些问题。
博客系列 数据湖和仓库第 1 部分:范式简介 数据湖和仓库第 2 部分:Databricks 和雪花 数据湖和仓库第 3 部分:Azure Synapse 观点 两种范式:数据湖与数据仓库 基于一些主要组件的选择...,云分析解决方案可以分为两类:数据湖和数据仓库。...为了补充工具集,在过去十年左右开发了数据湖类型的解决方案。 根据 Wikipedia 中的一个非常广泛的定义,数据湖是一种可以以原始形式存储数据的解决方案。...数据湖:去中心化带来的自由 数据湖范式的核心原则是责任分散。借助大量工具,任何人都可以在访问管理的范围内使用任何数据层中的数据:青铜、白银和黄金。...集中式数据湖元数据管理工具越来越多,但使用它们取决于开发过程。技术很少强制这样做。 结论:数据湖和数据仓库 在这篇文章中,我们讨论了数据仓库和基于数据湖的解决方案的基本方法或范式的差异。
随着湖仓技术的持续演进,数据仓库和数据湖方案在快速演进和弥补自身缺陷的同时,二者之间的边界也逐渐淡化,湖上建仓、仓中数据降冷到湖、物化视图、冷热融合查询等方案也越来越多的成为各个公司的标配,各大厂商也陆续提出了自己的湖仓融合方案...通过本次分享,听众可以了解新一代湖仓湖仓融合架构、物化视图等方向的前沿技术。...演讲题目:天穹OLAP:实时湖仓融合平台架构实践 演讲提纲:本次分享将会介绍基于天穹 OLAP 平台的实时湖仓融合架构。主要内容包括: 1....介绍数据湖与实时数仓之间的异同以及湖仓融合的意义、常见湖仓融合方案的优劣 2. 解析腾讯大数据是如何解决当前湖仓融合的痛点,以及如何将实时数仓演变成新的实时湖仓融合架构 3....腾讯大数据后续如何更进一步升级湖仓融合架构 听众收益: 1. 了解当前数据湖及实时数仓的优劣,并了解腾讯大数据是如何解决当前湖仓融合的痛点 2.
我们比较了 Databricks 和 Snowflake,以评估基于数据湖和基于数据仓库的解决方案之间的差异。 在这篇文章中,我们将介绍基于数据仓库和基于数据湖的云大数据解决方案之间的区别。...根据上一篇给出的定义,我们可以粗略的说Databricks是一个基于数据湖的工具,而Snowflake是一个基于数据仓库的工具。现在让我们更深入地研究这些工具。...Delta 文件格式是一种将数据库优势带入数据湖世界的方法。除其他外,该格式提供数据模式版本控制和数据库类型 ACID 事务。根据数据湖范式,文件格式本身是开放的,任何人都可以免费使用。...基于 Delta 格式和 Databricks 工具,该公司正在尝试为数据湖和数据仓库混合方法传播一种新颖的“Data Lakehouse”范式概念。...这是 Snowflake 向数据湖范式方向扩展其解决方案的方式之一。如今,它提供了用于实时数据摄取的高效工具等。
问题导读 1.什么是数据仓库、数据集市和数据湖? 2.湖仓一体化为什么诞生? 3.湖仓一体化是什么? 4.湖仓一体化的好处是什么?...那么接下来我们就来了解一下湖仓一体化的基本概念吧。 1.什么是数据仓库、数据集市和数据湖?...由于这些原因,数据湖的许多功能尚未实现,并且在很多时候丧失了数据湖的优势。 2.湖仓一体化为什么诞生?...是否能有一种方案同时兼顾数据湖的灵活性和云数据仓库的成长性,将二者有效结合起来为用户实现更低的总体拥有成本?那么湖仓一体化就是答案! 3.湖仓一体化是什么?...4.湖仓一体化的好处是什么? 湖仓一体能发挥出数据湖的灵活性与生态丰富性,以及数据仓库的成长性与企业级能力。
我们将讨论 Azure Synapse 在数据湖和数据仓库范式规模上的定位。 在本文中,我们将讨论 Microsoft 的 Azure Synapse Analytics 框架。...具体来说,我们关注如何在其中看到数据仓库和数据湖范式的区别。 为了熟悉这个主题,我建议你先阅读本系列的前几篇文章。...数据湖和仓库第 1 部分:范式简介 数据湖和仓库第 2 部分:Databricks 和Showflake 数据湖和仓库第 3 部分:Azure Synapse 观点 我们现在考虑一个更新颖的解决方案,该解决方案与该主题的角度略有不同...那么,分析(Synapse Analytics)的新功能是什么? 一些工具,尤其是数据工厂( Data Factory) 和数据仓库,在 Synapse 环境之前就已经可用。...除 Synapse 专用 SQL 池数据仓库外,所有处理组件均按数据湖范例的典型使用量付费。所有工具甚至都有自动关机功能。
五、汽车之家湖仓一体架构实践案例分享 以下文字来源DataFunTalk,介绍了如何基于Apache Iceberg构建湖仓一体架构,将数据可见性提升至分钟级;从多维分析的角度来探讨引入Apache Iceberg...02 基于 Iceberg 的湖仓一体架构实践 湖仓一体的意义就是说我不需要看见湖和仓,数据有着打通的元数据的格式,它可以自由的流动,也可以对接上层多样化的计算生态。 ——贾扬清 1....实例类型选择 Iceberg 表,然后选择目标库,表明要把哪个表的数据同步到 Iceberg 里,然后可以选原表和目标表的字段的映射关系是什么样的,配置之后就可以启动分发任务。...总结 通过对湖仓一体、流批融合的探索,我们分别做了总结。 湖仓一体 Iceberg 支持 Hive Metastore; 总体使用上与 Hive 表类似:相同数据格式、相同的计算引擎。...但是在架构层面上,这个意义还是很大的,后续我们能看到一些希望,可以把整个原来 “T + 1” 的数仓,做成准实时的数仓,提升数仓整体的数据时效性,然后更好地支持上下游的业务。
原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。...湖仓数据无缝集成、自由流转 : 结合 Doris 异步物化视图能力和内置作业调度功能,用户可以便捷的基于 Doris 对湖仓数据进行分层加工处理,从而简化湖仓数据处理的复杂度。...统一数据湖的构建和计算引擎 : Apache Doris 支持主流湖仓的数据写入能力,用户可以基于 Doris 进行统一的数据写入、处理及分析,形成湖仓一体架构下的链路闭环。...基于 Apache Doris 的湖仓一体架构快手基于 Apache Doris 升级为湖仓一体分析平台,新架构如图所示:从下至上,主要分为以下几个层级:数据加工层:数据源数据同步到数据湖仓(Hive/...结束语引入 Apache Doris,使快手成功从湖仓分离架构升级到湖仓一体架构。
本文主要介绍为了应对以上挑战,我们在湖仓一体方向上的一些探索和实践。 Why?为什么需要湖仓一体 在讨论这个问题前,我们可能首先要明确两个概念:什么是数据湖?什么是数据仓库?...湖仓一体是近两年大数据一个非常热门的方向,如何在同一套技术架构上同时保持湖的灵活性和仓的高效性是其中的关键。...在B站,基于我们之前的技术栈和实际的业务场景,我们选择了第二个方向,从数据湖架构向湖仓一体演进。...B站的湖仓一体实践 对于B站的湖仓一体架构,我们想要解决的问题主要有两个:一是鉴于从Hive表出仓到外部系统(ClickHouse、HBase、ES等)带来的复杂性和存储开发等额外代价,尽量减少这种场景出仓的必要性...我们基于Iceberg构建了我们的湖仓一体架构,在具体介绍B站的湖仓一体架构之前,我觉得有必要先讨论清楚两个问题,为什么Iceberg可以构建湖仓一体架构,以及我们为什么选择Iceberg?
湖仓一体作为新一代大数据技术架构,将逐渐取代单一数据湖和数仓架构,成为大数据架构的演进方向。当前已有 DeltaLake、Iceberg、Hudi 等国外开源的数据湖存储框架。...数据湖。数据湖使用云上的对象存储,能够解决存储扩展性问题。然而数据湖原先是为存储任意类型的数据所设计,缺乏对元数据的组织管理,容易形成数据沼泽,难以发挥数据的价值。 4. 湖仓一体。...LakeSoul :构建现代化数据智能架构 LakeSoul 是北京数元灵科技自主研发的湖仓一体存储框架,也是目前国内唯一的开源湖仓平台。...LakeSoul 针对对象存储做了专门的性能优化,在数据湖上构建出完整的实时数仓功能,支持数据的实时更新写入。湖仓一体化的方式大幅简化基础设施的使用门槛,并极大提升资源利用效率和性能。 3....LakeSoul 通过统一的实时、批量存储的核心能力,构建了流批一体、湖仓一体、分析智能一体的现代湖仓数据智能架构。
为此,这篇文章我们将主要分析: 1、数据仓、数据湖、湖仓一体究竟是什么? 2、架构演进,为什么说湖仓一体代表了未来? 3、现在是布局湖仓一体的好时机吗?...01:数据湖+数据仓≠湖仓一体 在湖仓一体出现之前,数据仓库和数据湖是被人们讨论最多的话题。 正式切入主题前,先跟大家科普一个概念,即大数据的工作流程是怎样的?...就湖仓一体发展轨迹来看,早期的湖仓一体,更多是一种处理思想,处理上将数据湖和数据仓库互相打通,现在的湖仓一体,虽然仍处于发展的初期阶段,但它已经不只是一个纯粹的技术概念,而是被赋予了更多与厂商产品层面相关的含义和价值...这里需要注意的是,“湖仓一体”并不等同于“数据湖”+“数据仓”,这是一个极大的误区,现在很多公司经常会同时搭建数仓、数据湖两种存储架构,一个大的数仓拖着多个小的数据湖,这并不意味着这家公司拥有了湖仓一体的能力...,湖仓一体绝不等同于数据湖和数据仓简单打通,反而数据在这两种存储中会有极大冗余度。
其次,您可以订阅数据湖仓服务,例如软件即服务 (SaaS)。 本文将深入探讨这两种类型的数据湖仓部署的特征,介绍 Cloudera 新的一体化湖仓产品 CDP One 的优势。...PaaS 数据湖仓 平台即服务 (PaaS) 数据湖仓是在您的云帐户中配置的数据湖仓的虚拟化部署。Cloudera 数据平台 (CDP) 公共云是 PaaS 数据湖仓的一个示例。...SaaS 数据湖仓 软件即服务 (SaaS) 数据湖仓部署是作为服务提供的交钥匙解决方案。例如,最近发布的 CDP One数据湖仓一体化是一种在云中运行的 SaaS 产品(亚马逊网络服务)。...让我们深入研究每个类别并将其与 PaaS 数据湖仓部署进行比较。 硬件(计算和存储):与 PaaS 数据湖仓一样,CDP One 数据湖仓驻留在云中并使用虚拟化计算。...CDP One 是一种一体化数据湖仓软件即服务 (SaaS) 产品,可对任何类型的数据进行快速简便的自助分析和探索性数据科学。
因此,湖仓一体化应运而生,旨在将数据仓库的结构化分析能力与数据湖的存储灵活性无缝结合,为企业提供一个综合的数据管理方案。 接下来,我们就湖仓一体进行更深入的分析。...现实的业务需求,逼着他们追求湖仓一体。 湖仓一体化策略的关键,在于它整合了数据仓库的高效、结构化查询处理能力,和数据湖的大规模、多样化数据存储能力。...随着技术的不断发展,我们预计湖仓一体化将在未来的企业数据战略中扮演越来越重要的角色。 具体怎么实现湖仓一体? 既然湖仓一体这么好,那么,应该怎么样来实现湖仓一体呢?...当然,湖仓一体的技术创新才刚刚开始,未来还有很长的路要走。 展望未来,湖仓一体化预计将在多个维度实现技术革新和进步。...同时,云计算的广泛应用将促进湖仓一体化方案在云原生和多云环境中的适应性,增强其灵活性和扩展性。 此外,用户友好性和无缝集成,将成为湖仓一体化解决方案的关键特征。
业界将这种直接建立在数据湖之上,却能同时覆盖数据湖与数据仓库存储场景的架构为湖仓一体(LakeHouse)。...然而开源表格式距离生产可用的湖仓一体架构还有着较大的鸿沟,在这个背景下网易在 2022 年开源了湖仓管理系统 ——Arctic。...基于 Arctic 可以帮助各类数据平台,工具和产品快速搭建开箱即用,流批统一的湖仓。 要构建一套开箱即用的湖仓系统,自动优化是第一个需要解决的需求。...现在大部分开源的数据湖表格式都要求用户投入大量的精力来维护你数据湖表中的文件结构,稍不留神表的查询性能就可能出现较大的下滑。 湖仓优化的需求与难点 湖仓上有两类常见的优化需求:文件合并与文件清理。...过多的碎片文件会造成数据膨胀,进一步降低湖仓表的读取性能,故及时得合并碎片文件到用户的预期大小对湖仓表的性能至关重要。
作者:bearly 大数据领域流批一体和湖仓一体都是技术演进的趋势,技术大一统是每个 coder 的浪漫。...前言: 大数据领域流批一体和湖仓一体都是技术演进的趋势,技术大一统是每个 coder 的浪漫。...Iceberg 使用过程中 Bug 及 Feature,我们给 TEG 湖仓同学提的 issue,数平同学协助解决,再次感谢 TEG 湖仓团队。...我们后续的实时湖仓方案会采用 StarRocks 3.x + Iceberg,便于湖仓融合。...可以对外作为一个统一组件供业务使用,追求批流一致性语义,提供实时离线一体化的开发体验。
Hudi介绍 概述 架构图 核心概念 Timeline 文件布局 索引 表类型与查询 COW类型表详解 MOR类型表详解 流实时摄取 Frog造数程序 Structured Streaming 湖仓一体...hudiTableName}") .awaitTermination() } } 运行 启动HDFS集群 启动Hive MetaStore和HiveServer2 启动造数程序 湖仓一体...我们来看看这些是什么样的JOB。 image-20210323182655317 为了方便Job容易被观察,我为每一个Stream Query设置一个容易识别的名称。...read-options 推荐阅读 触宝科技基于Apache Hudi的流批一体架构实践 Apache Hudi在Hopsworks机器学习的应用 通过Z-Order技术加速Hudi大规模数据集分析方案 实时数据湖:
领取专属 10元无门槛券
手把手带您无忧上云