首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

人工智能-深度学习

空山鸣响,静水流深:深度学习概述 ---- 深度学习的一些简介,其要点如下: 深度学习实际上是基于具有多个隐藏层的神经网络的学习; 深度学习的思想来源于人类处理视觉信息的方式; 深度学习的发展得益于数据的井喷和计算力的飙升...image 玉不琢不成器:深度学习中的优化 ---- 深度学习中实现优化的思路,其要点如下: 深度学习中的优化需要解决病态矩阵、局部极小值和鞍点等问题; 深度学习优化中的降噪方法包括动态采样、梯度聚合和迭代平均...image 困知勉行者勇:深度强化学习 ---- 深度强化学习(deep reinforcement learning)是深度学习和强化学习的结合,它将深度学习的感知能力和强化学习的决策能力熔于一炉,用深度学习的运行机制达到强化学习的优化目标...,从而向通用人工智能迈进。...深度强化学习的简单原理与方法分类,其要点如下: 深度强化学习是深度学习和强化学习的结合,有望成为实现通用人工智能的关键技术; 基于价值的深度强化学习的基本思路是建立价值函数的表示,通过优化价值函数得到最优策略

57820

人工智能 = 深度学习?

由于近期在图片、语音识别的技术突破,以及AlphaGo背后的技术,都采用的是深度学习技术,使得许多人认为人工智能就是深度学习。...然而,在许多业内人士看来,尽管深度学习确实推动了一拨技术变革,但其所代表的人工智能技术仍然是“弱人工智能”技术。...虽然三位作者和深度学习顶尖大牛Geoffrey Hinton相互之间都礼貌地表明,“贝叶斯程序学习”和“深度学习”在不同的任务上各领风骚,假如能彼此借鉴,一定能互相弥补,但是学术界中的“贝叶斯派”和“神经网络派...“自主学习”的“人工智能”仍然相去甚远。...这种向量与基于深度学习产生的词向量类似,可以用于进行语义相似度计算,但是不同点是“概念化向量”是可解释的,而由深度学习产生的词向量是不可解释的。 ? ?

78620
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人工智能 机器学习 深度学习

    人工智能、机器学习、深度学习这些名词经常会在各种场合听到,那具体有哪些区别呢?在业内来说,这几个概念还是有区别的,如果混用就会让人觉得是个门外汉。...业界有这个说法:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限。 深度学习:神经网络为代表很“深”的机器学习。这个解释是我个人给出的,仅供参考~深度学习,首先要很“深”。...深度学习的基础是神经网络,而神经网络往往层数越深,效果越好。...深度学习现在很火,甚至可以说人工智能火就是被深度学习带火的,其原因还是效果好。...深度学习大大提升了人脸识别、语音识别这些任务的准确率,使得很多之前不可能的应用成为可能,这是通用人工智能的必经之路,当然也是未来的方向。

    1.2K20

    人工智能、机器学习、深度学习:技术革命的深度解析

    人工智能、机器学习、深度学习:技术革命的深度解析 引言 在当今数字化时代,人工智能(AI)、机器学习(ML)和深度学习(DL)已经成为推动技术进步和创新的关键力量。...第三部分:深度学习的创新与突破 3.1 深度学习的定义 深度学习(DL,Deep Learning)是机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标...深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。 深度学习是机器学习的一个子领域,它使用多层神经网络来模拟人脑处理信息的方式。...3.2 深度学习的关键概念 深度学习是机器学习的一个子领域,它使用类似于人脑中的神经网络结构来学习数据的复杂模式。...3.4 深度学习的应用案例 深度学习由于其强大的数据处理和特征提取能力,在多个领域都有广泛的应用。

    55610

    人工智能、机器学习和深度学习

    毕竟,它一直是电影中的热门焦点,例如“终结者”、“黑客帝国”等等。 但您最近可能还听说过其他术语,如“机器学习”和“深度学习”,有时它们与“人工智能”交替使用。...结果,人工智能、机器学习和深度学习之间的区别可能非常不明确。 接下来,我将简单介绍人工智能(AI)、机器学习(ML)和深度学习(DL)的实际意义以及它们的不同之处。 那么AI、ML和DL有什么区别?...一台非常擅长识别图像的机器,但别无他用,这是狭义AI的一个例子。 本质上机器学习只是实现人工智能的一种途径。...一旦准确度足够高,我们可以认为机器现在已经“学习”了猫的样子。 深度学习是机器学习的众多方法之一。其他方法包括决策树学习、归纳逻辑编程、聚类、强化学习和贝叶斯网络等。...每个图层挑选一个特定的要学习的特征,例如图像识别中的曲线/边缘。正是这种层次才给了深度学习这个名字,深度是通过使用多层而不是单层创建的。

    75330

    游戏中的深度学习与人工智能

    本篇文章主要跟大家分享的内容是深度学习在游戏AI中的应用这样一个话题: NPC的驱动粗分可以分成低级、中级、高级、特高级,这样几个类别。...所以,如果期望NPC在复杂环境中有比较好的表现那么就需要有更合适的方式,例如让NPC自己在大量的游戏过程中自己学习最好的方式并逐步进化。 这种情况下人工智能在游戏AI中的应用就越来越受到人们的关注。...在落地的过程中可以使用经典的统计方法来做,也可以用神经网络来拟合策略,当然也可以使用人工智能中比较经典的强化学习的套路来做实现,这些都是可以选择的路径。...卷积神经网络有着很好的特征提取的特性,收敛快,适合输入为大量像素的情形。 这里简单介绍一下卷积网络,卷积网络是一种很常见的深度学习网络构建方式。其中拥有卷积层、池化层和最终的输出层。...深度学习在这个场景中也是有应用的,现在用的比较多的是DQN,全称叫做Deep Q-Network。

    1.8K60

    深度学习:开启人工智能的新纪元

    深度学习:开启人工智能的新纪元 深度学习是机器学习的一个子领域,它基于人工神经网络的学习算法,特别是那些具有多个非线性变换的层(即“深度”)。...深度学习在人工智能中的地位 深度学习已经成为人工智能(AI)领域的一个重要支柱,因为它提供了一种强大的方法来处理和理解大量的复杂数据。...结论:总结深度学习的重要性,并强调其在推动人工智能发展中的作用。 这篇文章将为读者提供一个深度学习领域的宏观视角,帮助他们理解这一技术如何开启人工智能的新纪元。...深度学习的这些突破和里程碑事件共同开启了人工智能的新纪元,推动了人工智能技术的快速发展和广泛应用。 2.深度学习的基础理论 1....博主写的跟人工智能相关文章推荐: 1、人工智能、机器学习、深度学习:技术革命的深度解析 2、GPT-5:人工智能的新篇章,未来已来 3、人工智能对我们的生活影响有多大?

    16511

    移动深度学习:人工智能的深水区

    人工智能技术经历6年的快速发展,重新定义了很多行业的用户体验,而这仅是开始。...随着5G商用大规模落地,以及智能手机硬件性能越来越强、AIoT设备的快速普及,基于云-边缘-端算法和算力结构的移动端人工智能,仍有非常大的发展空间,亟待我们快速理解移动端深度学习的原理,掌握如何将其应用到实际业务中...在移动端应用深度学习技术的业界案例 在互联网行业中,在移动端应用深度学习技术的案例越来越多。从深度学习技术的运行端来看,主要可以分为下面两种。...在移动端应用深度学习技术的难点 在移动端应用深度学习技术,要考虑各种机型和App指标的限制,因此难点较多。如何使深度学习技术稳定高效地运行在移动设备上是最大的考验。...首先介绍基础的数学原理和深度学习模型,然后深入移动计算设备的体系结构,以及如何在这种体系结构上进行高效的深度学习计算。左下阅读原文,开辟爱国通道,支持AI国货,打破移动深度学习系统的技术封锁。 ?

    1.6K20

    移动深度学习:人工智能的深水区

    人工智能技术经历6年的快速发展,重新定义了很多行业的用户体验,而这仅是开始。...随着5G商用大规模落地,以及智能手机硬件性能越来越强、AIoT设备的快速普及,基于云-边缘-端算法和算力结构的移动端人工智能,仍有非常大的发展空间,亟待我们快速理解移动端深度学习的原理,掌握如何将其应用到实际业务中...在互联网行业中,在移动端应用深度学习技术的案例越来越多。从深度学习技术的运行端来看,主要可以分为下面两种。 一种是完全运行在移动端,这种方式的优点显而易见,那就是体验好。...在移动端应用深度学习技术,要考虑各种机型和App指标的限制,因此难点较多。如何使深度学习技术稳定高效地运行在移动设备上是最大的考验。拆解落地过程中的复杂算法问题,就是移动端团队面临的首要挑战。...▊ 在服务器端和移动端应用深度学习技术的难点对比 通过对比服务器端的情况,更容易呈现移动端应用深度学习技术的难点,对比如下表所示。

    66440

    深度学习:通用人工智能的关键

    深度学习算法是人工智能的前沿,也是自主驾驶的主要组成部分之一。...但尽管深度学习近年来推动了人工智能领域的发展,但它本身及其基础技术,如深神经网络,仍面临着一些根本性的问题,使它们无法复制人脑的一些最基本的功能。...当前的深度学习系统“犯了愚蠢的错误”,并且“对分布的变化不太可靠”,这是当前人工智能系统的主要关注点之一。神经网络容易受到对抗性例子的影响,数据的扰动会导致人工智能系统以不稳定的方式工作。...如今,人工智能算法执行图像分类、目标检测和面部识别等任务,其准确度往往超过人类。语音识别和语音到文本转换是当前深度学习系统表现良好的其他领域。...因果关系是当前机器学习系统的一个主要缺点,其核心是寻找和匹配数据中的模式。Bengio相信,拥有能够组合和操作这些命名对象和语义变量的深度学习系统,将实现具有因果结构的人工智能。

    55710

    人工智能深度学习入门指南

    随着人工智能(AI)技术的飞速发展,深度学习作为其重要分支,已经成为许多领域的研究热点。深度学习通过模拟人脑神经网络的运作方式,使得机器能够处理和分析海量的数据,从而实现更高级别的智能。...本文将为你提供一份深度学习入门指南,帮助你快速掌握深度学习的基本知识和应用技能。 1. 了解深度学习基本概念 在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、损失函数、反向传播等。...这些概念是深度学习的基础,对于理解深度学习的原理和应用至关重要。 2. 学习编程语言和工具 深度学习需要编程实现,因此你需要掌握一门编程语言,如Python。...总结 深度学习是一个充满挑战和机遇的领域,通过掌握基本概念、编程语言和工具、数据预处理和特征工程、模型构建和调优以及实践项目和应用等步骤,你可以逐渐入门深度学习并取得良好的学习效果。...希望本文能为你提供有益的参考和指导,帮助你在深度学习的道路上不断前行。

    22110

    机器学习、深度学习、人工智能的区别与联系!!

    核心点:从5大方面,讲解机器学习、深度学习、人工智能的区别和联系! 没有接触过机器学习的同学,往往对机器学习、深度学习、甚至是人工智能有着模糊的概念。 在脑海中,往往裹了一层纱,好似懂,又说不明白。...在进行深度的对比人工智能、机器学习和深度学习之后,有助于大家理清概念、选择适当技术,并建立起整个学科的框架,绝对可以帮助大家更有目标的去学习。...深度学习: 人工智能是一个更广泛的概念,指涉包括规则系统、专家系统在内的所有使计算机具有智能的技术。机器学习是一种实现人工智能的方法,而深度学习是机器学习的一种技术手段,通过神经网络实现学习和表示。...深度学习是机器学习的一种,通过深度神经网络实现对数据的层次化学习。 数据需求 人工智能 数据需求: 人工智能的实现可能不严格依赖于大量的数据,而更多地依赖于先验知识、规则系统和专家经验。...对比 人工智能 vs. 机器学习 vs. 深度学习: 人工智能的应用广泛,包括了模拟人类智能的各个方面,从专家系统到图像处理等。

    68510

    揭开人工智能、机器学习和深度学习的神秘面纱

    深入学习,机器学习,人工智能——所有代表分析的未来的流行词。在这篇文章中,我们将通过一些现实世界的例子来解释什么是机器学习和深度学习。在以后的文章中,我们将探讨垂直用例。...这样做的目的不是让你成为一名数据科学家,而是让你更好地理解机器学习能做些什么。 image.png 什么是人工智能? 纵观人工智能的历史,这一名词不断被重新定义。...AI是一个总括术语(这个想法始于50年代);机器学习是AI的子集,深度学习是ML的子集。 image.png 1985年,我在国安局实习时,人工智能是一个非常热门的话题。...最后,应用监督机器学习,并对标记的客户进行测试。 image.png 深度学习 深度学习是多层神经网络的名称,多层神经网络是由输入和输出之间的几个节点“隐藏层”组成的网络。...深度学习算法有不同的变体,可以与MapR的分布式深度学习快速入门解决方案一起使用,以构建数据驱动的应用程序,如下所示: image.png 用于改进传统算法的深度神经网络。

    71412

    人工智能、数据挖掘、机器学习和深度学习的关系

    四、深度学习 深度学习(Deep Learning)的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。...深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。...五、人工智能与机器学习、深度学习的关系 严格意义上说,人工智能和机器学习没有直接关系,只不过目前机器学习的方法被大量的应用于解决人工智能的问题而已。...深度学习是机器学习现在比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。 所以,如果把人工智能与机器学习当成两个学科来看,三者关系如下图所示: ?...如果把深度学习当成人工智能的一个子学科来看,三者关系如下图所示 ? 六、数据挖掘与机器学习的关系 数据挖掘主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。 ?

    1.5K70

    人工智能、机器学习、深度学习的区别在哪?|编译

    编者:T 客汇 杨丽 张苏月 关键词:人工智能,机器学习,深度学习 网址:www.tikehui.com 有人说,人工智能(Artificial Intelligence)是未来。...例如,今年早些时候,Google DeepMind 的 Alphago 程序击败了韩国围棋大师李世乭九段。人工智能、机器学习和深度学习这些词成为媒体热词,用来描述 DeepMind 是如何获得成功的。...他将深度学习中添加了「深度」,也就是这些神经网络中的所有层。 通过在某些场景中深度学习,机器训练的图像识别要比人做得好:从猫到辨别血液中癌症的指标,再到核磁共振成像中肿瘤。...深度学习,赋予人工智能光明的未来 深度学习使得许多机器学习应用得以实现,并拓展了人工智能的整个领域。深度学习一一实现了各种任务,并使得所有的机器辅助变成可能。...无人驾驶汽车、预防性医疗保健、甚至的更好的电影推荐,都触手可及或即将成为现实。人工智能就在现在,也在未来。有了深度学习,人工智能可能甚至达到像我们畅想的科幻小说一样效果。

    74350

    人工智能中的深度学习:原理与实践

    什么是深度学习?深度学习(Deep Learning)是机器学习的一个分支,旨在通过模拟人脑的神经网络结构来解决复杂的任务。...深度学习通过多层神经网络,自动从数据中学习特征,避免了传统机器学习中手动特征工程的繁琐过程。深度学习在许多领域取得了突破性进展,包括计算机视觉、自然语言处理和语音识别等。...深度学习的基本原理深度学习的核心思想是神经网络。一个简单的神经网络由输入层、隐藏层和输出层构成。每一层由多个神经元(或节点)组成,神经元通过加权连接相互连接,传递信息。...)}')plt.imshow(x_test[0], cmap=plt.cm.binary) # 显示第一张测试图片plt.show()总结深度学习作为人工智能的一个重要分支,通过模拟人脑的神经网络结构...随着深度学习技术的不断进步,越来越多的应用场景得到了广泛的应用,包括计算机视觉、自然语言处理等领域。随着计算能力的提升和数据量的增加,深度学习将在未来的人工智能发展中扮演更加重要的角色。

    22710

    游戏中的深度学习与人工智能(答疑)

    Q1:机器学习和深度学习在文本日志分析领域有做得比较好的案例吗?...面对这么庞大的日志,貌似目前都没有一个很好的解法,这个相信很多同学都碰到类似的问题,不管监督还是非监督学习,对于未知文本分析都起不了很好的作用,总不能人肉长期来分析,也不是特别合适,不知道老师对这方面的看法是如何的...如果是文字比较多,那么也是NLP研究的一个范畴。这类应该还是比较典型的监督学习。目前如果使用深度学习做文本分析,还是需要由人来大量标定样本,进而让分类器识别相应的文本分类。...Q2:高老师,请问,深度学习应用于游戏的最大特点和难点是什么? 深度学习的特点是可以End-to-End,那么在以图片或者视频作为输入的场景中,显然巨大的样本维度是一个非常难以应付的问题。...FC游戏的强化学习,我的TEAM已经在尝试中了,其实原理是一样的,只不过显然星际争霸这样的游戏更为复杂。

    63040

    人工智能深度学习怎么绕坑

    深度学习作为人工智能领域非常重要的一类技术实现方式,已经是目前大多数以AI为核心研究能力的企业的必修课程了。 我听过很多没有读过研究生或博士课程的同学跟我诉苦,觉得深度学习非常难,感觉没有着手点。...不过这些工程技术通常也是被封装好的可供调用的软件包,所以实现起来也不用我们亲自动手。这样落地就容易得多。 ? 深度强化学习方面: 强化学习是比较难的部分,也是传统人工智能所研究的范畴。...现在强化学习和深度学习结合到了一起,焕发了新的活力——它也是AlphaGO所基于的技术。深度强化学习旨在训练机器人能够在复杂环境中自己学到一套高质量的行动策略,并最终达成一个我们设定的目标。...这是人工智能领域中永恒的研究话题。 ? 生成对抗网络方面: 这是出现最晚的一类深度学习前沿领域研究,它每次训练是两个模型,一个生成模型一个判别模型。...通常从这个时候开始到最后可以成为一名合格的深度学习工程师需要6个月到12个月的时间,主要视个人的工程经验和学习能力而定,当然工程经验好的人会更占便宜一些。

    82930

    如何区分人工智能、机器学习与深度学习

    前言 在过去的几年里,人工智能(AI)一直是媒体大肆炒作的热点话题。机器学习、深度学习和人工智能都出现在不计其数的文章新闻中。...但是很多时候,大家对于这些概念并没有一个很清晰的认识,容易把这些概念弄混。 那么我们首先来回答下列问题:机器学习,深度学习以及人工智能之间的关系是怎样的。...其实它们三者的关系非常简单,人工智能概念包含最为广阔;机器学习为人工智能的一个大类的方法,其中深度学习是机器学习中目前最火也是表现能力最强的方法。 下面我们分别剖析三个概念。 ? ?...人工智能的简洁定义如下:努力将通常由人类完成的智力任务自动化。因此,人工智能是一个综合性的领域,不仅包括机器学习与深度学习,还包括更多不涉及学习的方法。...神经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。

    69120

    如何区分人工智能、机器学习与深度学习?

    现在科技行业的术语产生速度令人惊愕,几乎每天都有新名词被创造出来。最近一段时间人们讨论最多的莫过于人工智能、机器学习和深度学习了。...人工智能、机器学习和深度学习正在改变整个科技世界,但是这些技术的发展全都得益于数据学的发展和过去在数据储存、计算和分析上的巨大投入。...这张图中还解释了三者的定义。 人工智能所包含的范围最广,其次是机器学习,机器学习是人工智能的子领域,最后是深度学习,就是驱动现在人工智能蓬勃发展的技术。 ?...人工智能:三者中含义最广泛的术语,包括使用逻辑、如果-那么规则、决策树的能够模拟人类智力的所有技术(包含机器学习和深度学习) 机器学习:人工智能的子领域,包括了能够使机器改进任务体验的所有深奥统计技术,...包含了深度学习 深度学习:机器学习的子领域,由多种算法组成,能够让软件的多层级神经网络接受大量数据的“训练”,提高在语音、图像识别等任务上的表现 机器学习是人工智能技术的核心概念,通过模拟人类的决策过程来搭建神经网络

    1K60
    领券