首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python3操作Elasticsearch进行增删改查

    # -*- coding: utf-8 -*- from elasticsearch import Elasticsearch # 默认host为localhost,port为9200.但也可以指定host与port es = Elasticsearch() # 插入数据,index,doc_type名称可以自定义,id可以根据需求赋值,body为内容 es.index(index="my_index",doc_type="test_type",id=0,body={"name":"python","addr":"深圳"}) es.index(index="my_index",doc_type="test_type",id=1,body={"name":"python","addr":"深圳"}) #同样是插入数据,create() 方法需要我们指定 id 字段来唯一标识该条数据,而 index() 方法则不需要,如果不指定 id,会自动生成一个 id es.create(index="my_index",doc_type="test_type",id=1,body={"name":"python","addr":"深圳"}) #删除指定的index、type、id的文档 es.delete(index='indexName', doc_type='typeName', id=1) #删除index es.indices.delete(index='news', ignore=[400, 404]) query = {'query': {'match_all': {}}}# 查找所有文档 query1 = {'query': {'match': {'sex': 'famale'}}}# 删除性别为女性的所有文档 query2 = {'query': {'range': {'age': {'lt': 11}}}}# 删除年龄小于11的所有文档 query3 = {'query': {'term': {'name': 'jack'}}}# 查找名字叫做jack的所有文档 #删除所有文档 es.delete_by_query(index="my_index",doc_type="test_type",body=query) #get:获取指定index、type、id所对应的文档 es.get(index="my_index",doc_type="test_type",id=1) #search:查询满足条件的所有文档,没有id属性,且index,type和body均可为None result = es.search(index="my_index",doc_type="test_type",body=query) print(result['hits']['hits'][0])# 返回第一个文档的内容 #update:更新指定index、type、id所对应的文档 #更新的主要点: #1. 需要指定 id #2. body={"doc": <xxxx>} , 这个doc是必须的 es.update(index="my_index",doc_type="test_type",id=1,body={"doc":{"name":"python1","addr":"深圳1"}})

    03

    洞察 | 深圳数据分析师的职业前景如何?爬完拉勾数据给你分析 (附代码和过程)

    通过对局部地区某一岗位的总体分析,找出该地区该职位的职业发展前景规律。本文基于拉勾上2016年12月到2017年1月深圳地区数据分析师招聘数据,为这一行业的朋友作为参考;虽然数据略为过时,但变化也不大,规律依然适用。 在深圳 1、数据分析师主要还是开发类职业。开发类的职位,无论是市场需求还是薪资都是无可撼动的最高。 2、地区方面:如果你要在深圳找数据分析师的岗位,请去南山区,优先去科技园附近。 3、薪资方面,20K是业内中等水平; 4、学历方面,除非你直接攻读相关专业的博士,否则本科足矣; 5、技能方面:

    04
    领券