大数据行业在迅速的发展,几乎每天都会出现新的技术和方法。因此,想要跟上这个行业的步伐是有挑战性的。想要玩出数据的商业价值,让数据变成生产力,就需要读书了。俗话说:“读书如登山,每向上一步都又是一番风景,数据分析的成长之路也如登山一样,要想成为数据分析师,读书是必不可少的。
推荐理由:本书用诙谐有趣的讲述方式为大家介绍了python的基本语法,非常适合非计算机专业的初学者作为入门书来看。在这个过程中,该书会让你完成一系列习题,而你则可以通过反复练习来学到技能,这些习题也是专为反复练习而设计的。对于一无所知的初学者来说,在能理解更复杂的话题之前,这可以说是最有效的学习方式。
世界如此喧嚣,知识何其稀少。这是一个信息爆炸的时代,被资讯洪流裹挟的我们,都养成了非常不好的思维习惯:把信息当作知识,把收藏当作学习,把阅读当作思考,把储存当作掌握。为了给读者提供跟多有价值的信息,文
1、来源 有哪些你看了以后大呼过瘾的数据分析书? https://www.zhihu.com/question/60241622 做数据分析不得不看的书有哪些? https://www.zhihu.com/question/19640095 2、采集回答 3、清洗:去除空行、去重 4、统计分析 5、两个帖子中都有回答的作者,考虑大V、书商、利益相关者 作者 计数 大数据峰哥 3 Bottle 2 DataCastle数据城堡 2 DataHunter 2 George Li 2 GrowingIO 2
在DTCC 2016中国数据库技术大会“大数据创业”专场,Sensors Data CEO 桑文锋分享了主题为《深入浅出大数据分析》的演讲,作为一名资深大数据牛人,从大数据思维讲起,深入浅出剖析数据驱动的理念,常用的数据分析方法,推荐的思路,多维数据分析技术等。
“一切都被记录,一切都被分析”就了一个信息爆炸的时代,人类过去两年产生的数据占据了整个人类文明中所产生的数据的90%。而在这些无限丰富的数据中,蕴藏着巨大的价值,数据分析在数据爆炸式增长的前提下变得炙手可热,数据分析师甚至被称为“性感的职业”。由于需求的迫切增加和人才的短缺,数据人才显得弥足珍贵,数据分析师由此披上了华丽的光环。那么对于并非科班出身的人来说,如何通过自己的学习入门并成为厉害的数据分析师呢?下面是一份比较基础的书单,但也可以说是一个相对完整的入门学习体系。
这是一本有趣的数据分析书!基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。全书共8章,依次讲解数据分析必知必会知识、确定数据分析的结构化思维、数据处理技巧、数据展现的技术、通过专业化的视角来提升图表之美以及专业分析报告的撰写等内容。
▊《拿下Offer:数据分析师求职面试指南》 徐麟 著 电子书售价:34.5元 2020年07月出版 本书针对未来想要从事数据分析工作的在校学生、想要转行做数据分析的在职人员,以及想要在数据分析领域提高自己或跳槽的从业人员,深入浅出地讲解了面试和未来实际工作中所需的知识与技能,让读者对数据分析师这个岗位有更为全面和深刻的了解。 全书主要分为面试前的准备、面试中的技巧、面试中所需的知识储备、编程技能、实战技能,以及进一步学习提高的方法几部分,内容涵盖数据分析师面试的全流程,全方位提高读者在未来面试中的竞争力。
大概是自带了亲和属性,经常会有很多机会听到身边同事、朋友,甚至一些仅有数面之缘的人分享他们对于职业的看法和困惑。前不久,身边相熟的妹子,非常困惑地问我,为什么学了那么多软件,还是做不好数据分析? 这样的问题,不是第一次听到。我经历过那种痛苦而纠结的过程。今天老师说SPSS常用,明天发现金融行业SAS才是王道。回头翻翻网络,原来R已经铺天盖地。正当痛苦地一遍遍写代码时,发现朋友圈已经在刷“life is short,you need python”。我们拼命追赶,却永远赶不上前辈们的脚步。到最后,疲惫不堪。
领导说:“你去建材市场帮我买些配件。”你顶着烈日跑遍大小市场,但领导问你:“为何选这家?”你却答不上来。
我不喜欢一上来就推荐一堆参考资料的东西,那只会让初学者更迷茫。好比一个婴儿,你告诉他学会走路的方法有100种,他只会变的对走路毫无兴趣,他要的只是一种最有效的学会走路的办法,而不是100种。 同样的,下面介绍的是我之前刚开始自己学习python的1种方法,只需要1种就可以了。 第1步,基础入门 很多人喜欢搞一本厚厚的书来看,虽然看完了但是还不会用Python,这是最大的悲哀。 伤心吧?难过吧? 其实,你只需要,看菜鸟教程网站的这个教程就足够了,网站地址: Python3 教程 | 菜鸟教程
我不喜欢一上来就推荐一堆参考资料的东西,那只会让初学者更迷茫。好比一个婴儿,你告诉他学会走路的方法有100种,他只会变的对走路毫无兴趣,他要的只是一种最有效的学会走路的办法,而不是100种。
深入浅出数据分析 以类似“章回小说”的活泼形式,生动地向读者展现优秀的数据分析人员应知应会的技术。
我不喜欢一来就推荐一堆参考资料的东西,那只会让初学者更迷茫。好比一个婴儿,你告诉他学会走路的方法有100种,他只会变的对走路毫无兴趣,他要的只是一种最有效的学会走路的办法,而不是100种。 同样的,下面介绍的是我之前刚开始自己学习python的1种方法,只需要1种就可以了。 第1步,基础入门 很多人喜欢搞一本厚厚的书来看,虽然看完了但是还不会用Python,这是最大的悲哀。 伤心吧?难过吧? 其实,你只需要,看菜鸟教程网站的这个教程就足够了,网站地址: Python3 教程 | 菜鸟教程
我羡慕那些从学校走出甚至还未走出的时候,就可以以自己学会的知识和技术来创造价值的人;而另外一些人,比如我,要再过很久才能找到自己的位置。已经开始读这篇文章的话,你与我很可能是同类。 大学期间,我基本算得上是个正牌的文科生。毕业之后,目光却逐渐转向数据分析,这个跨度颇有点不靠谱的意味。不过,在岗位上一段时间之后,我发现像我这样的人不在少数,只是他们可能在开始时距离“数据”没有那么远,例如传媒或者社会科学,但大家跨越自己原专业、进行新知识学习的程度是相似的。 既然如此,也一定会有后来人需要这些故事和鼓励,使他们
如果你找一个熟悉的朋友给你推荐书单,他会倾向于越短越好,因为他想把他知道的最好的推荐给你,让你少花时间在不重要的事情上。
👆点击“博文视点Broadview”,获取更多书讯 互联网时代,都说得数据者得天下。 企业需要通过数据分析得出的结论做出正确的决策,确保业务精准符合用户市场需求,数据分析师这个岗位也得到了越来越多求职者的青睐。 本期就为大家分享14本数据分析类图书,让你轻松掌握数据分析的三板斧:Excel、SQL、Python,打好理论知识(统计学、机器学习)的基础。 即使你是零基础的小白,也能够轻松入门,并逐步进阶,找到自己喜欢的工作。 ---- 01 ▊《深入浅出数据分析》 Michael Milton 著
👆点击“博文视点Broadview”,获取更多书讯 当前,数据不仅是企业的核心资产和重要战略资源,也是重要的生产要素。数据资产已日益成为企业抢占未来发展主动权的前提和保障,做好数据治理、学会用数据赋能企业、驱动增长势在必行。 当一个时代来临的时候,最怕的是我们看不懂。 所以,为了帮大家看懂这个数智驱动的时代,博文菌为大家精心挑选了8本与数据赋能企业相关的权威经典书,希望帮助大家了解未来商业新形态的思考与实践,全面认识企业数智化转型,找到驱动企业持续增长的新力量,成为企业不可或缺的新势力人才! ----
“数据分析”是一个含义颇为宽泛的概念,并且,在这个数据化的时代,这个概念几乎是无处不在的。为了保证内容的有效性,在这里仅提供我了解的一些方面。 我接触的数据分析,主要是围绕互联网产品展开的。从数据采集前的规划,到采集过程(交互逻辑设计等),到回收数据的整理(机器层面和人工层面),与业务相联系的数据汇总,到后期的报告呈现(项目成果呈现),都有“数据分析”涉及。 对单一产品来讲,数据分析(非挖掘)的集中体现,往往在运营层面。一方面是日常数据的跟踪,另一方面是重大活动、市场策略、新版本上市时的数据监测。
关注我的朋友可能很多都是学习 Python、爬虫、Web、数据分析、机器学习相关的。当然大家可能接触某个方向的时间不一样,可能有的同学已经对某个方向特别精通,有的同学在某个方向还处于入门阶段。
前言 如果我对一件事的了解不深、不透,总是浅尝辄止,那我自然体会不到这件事的妙处,也自然不会产生持久的兴趣。如果我能长期坚持去做一件事,一定是这件事带来的丰盈感和满足感超过了我的所有付出,一定是这件事日日夜夜萦绕在我的心头让我欲罢不能,一定是这件事唤起了我内心深处最强烈的兴趣。 如何成为一名很厉害的数据分析师? 入门 如果想要给自己一个不那么痛苦的开始,建议先从一本科普类或者半娱乐性质的书开始看起。这里推荐两本书籍:《深入浅出数据分析》有案例,有应用,在工作中还可以小试牛刀一下;《统计学(基本概念和方法)》
一、数据分析-入门篇 1.1《谁说菜鸟不会数据分析》 作者:张文霖, 刘夏璐, 狄松 简介:本书按照数据分析工作的完整流程来讲解。全书共8章,分别讲解数据分析必知必会的知识、数据处理技巧、数据展现的技
7.《Effective C++:改善程序与设计的55个具体做法(第3版 中文版)》
分享一下自己工作5年后,成功拿到京东offer,从传统行业转到数据分析的经历,希望能对同学们有所帮助。
但数据叔真心希望,在这个以团圆为关键词的节日里,你能早点下班,跟家人一起过节。光说几句祝福的话好像诚意不够,数据叔再送一本书,愿你在新年开工之际提高姿势水平、提高效率,早早下班!(福利详情见文末)
后记:JavaScript是一个被匆忙设计出来的语言,为什么能够击败众多的竞争者,成为浏览器之王呢?回到90年代,当时能和JavaScript争雄的有Java Applet,Flash,还有微软的JScript,Applet又丑又慢,Flash自成体系,JScript绑定微软浏览器,唯有JS,跨浏览器支持,可以和Web网页轻松交互。还有就是当时的网页都非常简单,HTML为主,动态的东西很少,写点简单的JS代码就可以搞定了,不需要复杂的,静态类型的,虚拟机支持的语言。但是让大家没有想到的是,Web迅速变成了一
大数据时代到来,如何从数据中提取、挖掘对业务发展有价值的、潜在的知识,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业管理的精益化,对于每个企业都意义重大,而这些工作,大多需要数据分析师才能完成,但如何才能成为一个合格的数据分析师呢? 我这里提四个方面,如果你是一个新手,想从事数据分析师这个职业,那么,你可以看看,当然如果你是个分析老鸟,在苦恼如何更进一步,也可以看下,可能于你也有益哦,数据分析师学无止境,总在痛并快乐着。 Part 1 数据分析师的基本素质 数据分析师最需要的基本素
这是一个很好的问题,对于新手、特别是非统计科班出身的人来说,心里总是有这样的顾虑,掌握的统计学基础只是不够,然而又应该从哪里入手呢?以下是中国统计网整理自知乎的一些答案,希望对大家会有所帮助。 @肖玄: 我认为首先要明确的是学统计干什么,如果有明确的作用,比如时间序列,市场调研这些,那么推荐书籍各不一样,统计终究只是一个工具,在实际运用中的偏重和变化还是蛮大的,如果不是有特别的目的,只是想要了解统计的话建议从理论基础看起,再看一些实际操作的书会比较好。 基础书籍,我看前面各位大师都
想要培养数据分析的能力,我认为可以从两部分来着手:一是数据分析方法论的建立,二是数据分析从入门到精通的知识学习。 那么该如何搭建自己的数据分析知识体系?数据分析的价值又在哪里?做数据分析有哪些具体的方法?又如何学习数据分析? 我把我之前的两篇文章整理下,和大家分享一下这些问题。 Part 1 | 数据分析方法论 & 知识体系 1. 数据分析体系:道、术、器 「道」是指价值观。要想做好数据分析,首先就要认同数据的意义和价值。一个不认同数据分析、对数据分析的意义缺乏理解的人是很难做好这个工作的。 「术」
推荐语:本书由Python pandas项目创始人Wes McKinney亲笔撰写,详细介绍利用Python进行操作、处理、清洗和规整数据等方面的具体细节和基本要点。
本课程以 Python 为主要开发语言,深入浅出,快速上手深度学习技术。学习本课程:
数据分析最近很多朋友问我,怎么样才能成为一名数据分析师呢,我没有基础,能不能做数据分析师呢? 正常智力的人,想要从菜鸟成为一名数据分析师,都是可行的,只不过,数字敏感度好的人,成长更快,那是不是说明,我们就不需要花时间学习数据分析的技能了呢,我之所以把数据分析称之为技能,而不是职能。 是因为,现在我们所处的阶段就是工业化转型信息化的时代,美国天生就是一个大数据国家,现在仍然有19万数据分析师的缺口,目测2016年,国内会有10万左右数据分析师的缺口,即使你是财务、运营、产品,数据分析都是你必备的一种技能
// 把闸拉了,今天谁也别想加班! // 又是一年1024,又是一年程序员节 电子工业出版社博文视点联合当当网为奋战了一整年的猿媛们 奉上一份安慰购书大礼包 ◆ 当当网计算机图书全场5折封顶 ◆ 粉丝专属优惠码 满200减50 UPY578 满300减80 SF5R86 买的越多优惠越大 犹豫什么 囤它! ---- 使用渠道:当当小程序或APP 使用时间:10/20-10/24 仅限当当自营科技类图书 结算时输入优惠码: 满200减50 UPY578 满300减80 SF5R86 进入下
首先,本章节使用到的数据集是ISLR包中的Default数据集,数据包含客户信息的模拟数据集。这里的目的是预测哪些客户将拖欠他们的信用卡债务,这个数据集有1w条数据,3个特征:
👆点击“博文视点Broadview”,获取更多书讯 在本月的TIOBE编程语言排行榜中,Python与去年同期相比上升了一个名次,战胜了Java,位列第2名! Python能够取得如此成绩,离不开其丰富的使用场景! 无论你是技术开发人员,还是普通的职场办公人士,都可以使用Python来解决自己工作中的问题。 本期就来给大家分享13本今年出版的Python类新书,从技术开发到机器学习算法,从数据分析到数据可视化,从自动化办公到股票分析……希望可以帮助大家找到适合自己的那一款! ---- 01
在上次的fme用户大会会后,我写了一点感想。在很早之前,我就觉得单纯的做数据处理是没什么前途的,所以要做分析,并且分析中有处理,处理中有分析。仅仅在处理中做一些分析,是不够的,所以我又找了一些书来读。接下来,我将按照书中的例子,做一点分享。
这是国外数据科学学习平台DataCamp成员写的一篇图文 8步 成为数据科学家。我们具体来看下有哪些学习内容和学习资源。
博文视点程序员读书节 第二日 ● 精彩继续 持续关注每日推送 > 更多精彩活动享不停 < 行业大咖私房书单 领域专家精彩联播 十日荐书计划 百份大厂联名福袋 学院课程全场超值秒杀 学院超级会员1元抢 …… 限定活动不间断进行 整整十天高密度福利轰炸 给你安排上了! ▼ 博文视点程序员读书节 10月15日-10月24日 十日好书&惊喜不间断 一波带走十重满足!我可以! 第 一 弹 十日荐书计划 第二日 荐书官:张俊红 数据分析师 擅长Python、SQL、Excel 数据科学领域实践分享者 推
作者 CDA 数据分析师 前言 2017年7月29日,由CDA数据分析师主办,以“跨界互联 数据未来”为主题的CDAS 2017第四届中国数据分析师行业峰会在北京中国大饭店隆重举行。 7月29日当天,除了引人眼球的主会场以外,上午同步开放4个分论坛,我们将逐一推送每个分论坛的盛况,以及演讲嘉宾速记稿整理,给每一个CDA成员奉上干货。 CDAS 2017中国数据分析师行业峰会上午的互联网大数据分论坛中,来自猎聘网、吆喝科技、云幕后、七麦科技等六位专家与教授,分享了大数据在互联网领域的实践和应用。
如果你打开招聘的职位要求,都会要求具有统计学的知识,这是因为统计学是数据分析、机器学习的基础知识,是必须要学习的。
👆点击“博文视点Broadview”,获取更多书讯 数据分析是数学知识、统计知识和分析人员自身专业知识的融合及实际运用,其关键在于挖掘数据潜在的价值,解决实际问题。 分析人员可使用一系列科学研究方法挖掘数据本身的意义及数据之间的关系,进而为实际研究提供有力的数据支撑。 网络问卷调研的兴起让我们可以使用问卷作为背景案例进行阐述,不仅可以将各类分析方法融入问卷研究,还可以将分析思路进行梳理,以“傻瓜”式的文字进行讲解,从而解决实际问题。 在浩如烟海的数据中,不论是科学研究还是商业调查,很大一部分数据是通过调查
在一个庞大机房的角落里, 存放着一台普普通通的服务器。 每天一开机,里边的居民就开始忙活起来了。 大家都要在操作系统老大的指挥下干活。 日子一天天地过去,这一天,大家正在干活,外边突然传来了咔嗒一声。 CPU阿甘很快掌握了拆箱子、装箱子的技巧,他变得非常熟练,乐在其中。 可是好景不长,IT系统很快进入分布式时代。 一个系统后面往往有数百台甚至数千台服务器在支撑,服务器之间需要频繁地交流。 网络通信的性能成为关键。 而阿甘发现,数据包太多, 自己在拆箱子、装箱子上已经力不从心了。
对于管控一条线或掌握一个模块的产品经理,一旦你提的需求并不准确,做的调研不够全面,对竞品功能研究不够透彻 ,在产品的更新迭代中没有足够数据去支撑决策,最后产品功能上线效果不理想......上面的任何一点,都可能成为产品经理承担责任的理由,最终的结果可能就是这样:
本书由Wes McKinney创作,他是Python pandas项目的创始人。本书是对Python数据科学工具的实操化、现代化的介绍,非常适合刚学Python的数据分析师或刚学数据科学以及科学计算的Python编程者。
首先你要有自己职业规划,知道数据分析和大数据是做什么的、能解决什么问题,给自己定一个小目标。一个有经验的数据科学家:最少要有2到3年工作经验,而工作经验体现在运用数据科学处理各种商业问题的能力上,同时需要具备以下技能: 一流的分析技巧:探索凌乱的数据集并提取洞察的能力; 在SQL运用能力方面是一名内行; 能很好的掌握假设检验、分配、回归分析和贝叶斯方法; 有与商业方面的机器学习经验; 对于Python语言和Jupyter环境有经验; 对于pandas、numpy、sk-learn和NLTK有一
这是国外数据科学学习平台DataCamp成员写的一篇图文《8步成为数据科学家》。我们具体来看下有哪些学习内容和学习资源。
适合对数据分析的入门者,对数据分析没有整体概念的人,常见于应届毕业生,经验尚浅的转行者。
领取专属 10元无门槛券
手把手带您无忧上云