首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

淡出段落的最后一个词

是什么?

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • linux下编辑VI窗口插入与编辑命令

    前言 在嵌入式linux开发中,进行需要修改一下配置文件之类的,必须使用vi,因此,熟悉 vi 的一些基本操作,有助于提高工作效率。 一,模式 vi编辑器有3种模式:命令模式、输入模式、末行模式。掌握这三种模式十分重要:   命令模式:vi启动后默认进入的是命令模式,从这个模式使用命令可以切换到另外两种模式,同时无论在任何模式下只要按一下[Esc]键都可以返回命令模式。   输入模式:在命令模式中输入字幕“i”就可以进入vi的输入模式编辑文件。在这个模式中我们可以编辑、修改、输入等编辑工作,在编辑器最后一行显示一个“--INSERT--”标志着vi进入了输入模式。当我们完成修改输入等操作的时候我们需要保存文件,这时我们需要先返回命令模式,在进入末行模式保存。   末行模式:在命令模式输入“:”即可进入该模式,在末行模式中有好多好用的命令。 二,复制 a,复制整行 命令模式下,光标位于要复制的当前行,输入 yy b,复制一个单词 命令模式下,光标位于要复制的当前单词的第一个字母,输入 yw 三,黏贴 命令模式下,输入 p 四,删除 a,删除整行 命令模式下,光标位于要删除的所在行,输入 dd b,删除一个单词 命令模式下,光标位于要删除的单词的第一个字母,输入 dw 五,撤销 命令模式下,输入 u 六,跳转 命令模式下,输入 要跳转的行数,然后再输入 gg 如:要跳转到当前文件的第150行,输入 150gg

    02

    Python做文本挖掘的情感极性分析(基于情感词典的方法)

    关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 我们会再接再厉 成为全网优质的技术类公众号 「情感极性分析」是对带有感情色彩的主观性文本进行分析、处理、归纳和推理的过程。按照处理文本的类别不同,可分为基于新闻评论的情感分析和基于产品评论的情感分析。其中,前者多用于舆情监控和信息预测,后者可帮助用户了解某一产品在大众心目中的口碑。目前常见的情感极性分析方法主要是两种:基于情感词典的方法(本次内容)和基于机器学习的方法(下次内容)。 1

    06

    将句子表示为向量(上):无监督句子表示学习(sentence embedding)

    word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展。既然词可以embedding,句子也应该可以(其实,万物皆可embedding,Embedding is All You Need ^_^)。近年来(2014-2018),许多研究者在研究如何进行句子表示学习,从而获得质量较高的句子向量(sentence embedding)。事实上,sentence embedding在信息检索,句子匹配,句子分类等任务上均有广泛应用,并且上述任务往往作为下游任务来评测sentence embedding的好坏。本文将介绍如何用无监督学习方法来获取sentence embedding,是对近期阅读的sentence embedding论文笔记的总结(https://github.com/llhthinker/NLP-Papers#distributed-sentence-representations)。欢迎转载,请保留原文链接https://www.cnblogs.com/llhthinker/p/10335164.html

    02

    HTML 基础

    本文介绍了HTML的基础知识和常见标签,包括<html>、<head>、<body>、

      1. 、、、
        以及

        领券