首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

银行核心海量数据无损迁移:TDSQL数据库多源异构迁移方案

本文将带来直播回顾第五篇《银行核心海量数据无损迁移:TDSQL数据库多源异构迁移方案》。...视频内容 关于TDSQL异构数据同步与迁移能力的建设以及应用方面的整个内容分四个部分: l 一是异构数据库方面包括数据分发迁移同步的背景——我们为什么要发展这一块的能力以及现在这部分服务的基本架构...事实上,作为国产自研的成熟的分布式数据库产品,TDSQL对内稳定支撑腾讯海量计费业务,对外开放5年来也通过云服务为微众银行等超过600家金融政企机构提供高性能、高可用、高可靠、强一致的分布式数据库服务。...当然,除了支持数据迁移,多源异构迁移方案也支撑数据汇总、分发等业务场景,这也是TDSQL具备完善的产品服务体系的体现。...1 TDSQL异构数据迁移分发的背景及架构方案 1.1 TDSQL异构数据迁移方案的场景 image.png TDSQL作为一个金融级数据库,面对的更多是金融级场景以及金融机构客户,金融机构往往有一些比较特殊的需求

2.6K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    海量数据迁移之外部表并行抽取(99天)

    对于大型项目中海量数据使用sqlloader是一种全新的方式,不过很明显,sqlloader的可扩展性更强,但是基于oracle平台的数据迁移来说,外部表的性能也不错。...对于数据迁移来说也是一个很好的方案。...使用外部表来做数据迁移,可以“动态”加载数据,能够很方便的从数据库中加载数据,对于数据校验来说就显得很有优势了,而对于sqlloader来说,可能得等到数据加载的时候才知道是不是有问题,如果对于数据的准确性要求极高...,可以使用外部表动态加载数据到备库,和现有的数据做比对,减少在升级过程中带来的灾难。...还有关于数据类型,对于clob,blob的加载,大家都比较头疼,在sqlloader中可能需要做一些额外的工作,来外部表中就和操作普通的表没有什么区别。 先来说说数据抽取的部分。

    1.6K50

    海量数据,极速体验——TDSQL-A核心架构详解来了 ​

    TDSQL-A有四个主要特点: 无共享MPP能实现无共享的存储,还可以实现线性的扩展; 在存储层面,通过自研列存储技术,能够做到行列混合存储; 在数据库规模方面,实现了超大规模集群的支持; 为了让客户有更好的体验...最早的时候我们是用单机PG来做一些大数据平台小规模的数据分析以及结果缓存。但随着腾讯业务的扩张,我们发现单机的数据库已经无法支撑相关业务的数据量及请求量,就萌生了开发分布式数据库的想法。...一是随着5G和loT时代的到来,数据呈现爆炸式的增长。单个数据库集群里面需要处理的数据的容量很容易就达到10PB级别的大小。这对传统的数据仓库及数据库来说,是一个非常有挑战的数据规模。...我们来小结一下TDSQL-A是如何实现超大规模数据集群支持的。 我们对整个数据库的执行逻辑进行了分流,把数据库分为了控制流和数据流。...1 TDSQL-A后续规划 TDSQL-A的后续规划分为两部分: 一方面是陆续将目前基于PG10的版本,merge到PG11、PG12、PG13等更高版本,持续地跟进社区版本丰富的特性,来提升用户的体验

    47730

    海量数据迁移,小程序云开发数据库这样做

    在优化的过程中,就涉及到了迁移的问题。 一般来说,业界针对升级和迁移,会提供热迁移和冷迁移两种方案: 冷迁移:冷迁移需要对数据库先进行停机,等迁移完成后,再重启数据库。...热迁移:热迁移无需对数据库进行停机,整个迁移过程中,数据库可以持续对外提供服务。用户对于热迁移无感知。...云开发作为基础服务提供商,是无法进行冷迁移的,因此,对于云开发来说,思考如何在现有的架构基础之上做好热迁移势在必行。 想要对云开发的数据库进行热迁移,首先,需要理解云开发数据库的底层架构。...热迁移的基础是数据库底层的迁移能力,而数据库底层的迁移分为三个状态: 数据同步:对快照和数据库的 oplog 进行拷贝和追踪; 数据割接:在 oplog 几乎追上时,进行数据割接; 目标集群可用:完成割接后...生产环境下目前迁移用户请求如图所示: ? 以上便是基于小程序云开发自身的数据库架构设计的数据库底层热迁移实现方案概述。 如果你对上文有任何疑问,欢迎在下方评论区留言。

    1.7K20

    海量数据迁移之冲突数据筛查(r2 第1天)

    对于数据迁移来说,无论准备工作准备的多么充分,在测试和正式生产环境中,心里还是会对冲突的数据有一些疑虑,心里感觉没底,因为生产的数据也是在不断变化的,要迁移数据也在做相应的改动,在这样的环境中,其实数据抽取的工作还是顾虑比较少的...可能会有一些紧急的数据更改任务,数据的稽核等等。。 对于主键相关的数据排查,如果在数据迁移前能够发现,是最好的了,这样可以极大的减少dba的工作量。...个人就是在这种窘境中这样设想了一个方法,首先通过查询主键信息,得到主键索引相关的列,然后通过Intersect来查询那些主键字段的数据在生产和迁移库上有冲突,这个过程可以创建一个临时的用户来加载外部表,...所以省去了创建额外的数据空间,而且可以考虑在备库上执行。...基本思路就是通过如下的sql语句来找到冗余的数据

    1.5K50

    海量数据, 为何总是 海量垃圾 ?!

    2017.9.10, 深圳, Ken Fang 雷军说:我拥有海量数据, 却不知道怎么用?每年, 花在存储海量数据的费用, 也是海量;足以使企业破产⋯ 为何会如此?...当我们将所谓 “海量数据分析” 的神秘面纱给揭开时, 打破 “海量数据分析” 的神话, 就会很容易的明白, 真正的问题到底出在哪?为何谷歌能做到的, 我们却做不到?...大家都明白的 Common Sense: 做海量数据分析, 要先能建立数据模型;有了数据模型, 我们才能从 “海量数据中, 去提炼出 “有用” 的数据。...海量数据分析最关键、最重要的ㄧ步:将海量数据 “转换” 为有用的数据。 而数据模型建立的前提是: @ 要能先分析出, 产生数据背后的 “用户的目的” 。例如:用户是基于什么样的社会事件?天灾?...这样的数据, 再如何的 “海量”, 也根本没法经由 “数据分析师”, 使用任何的数据分析工具, 建立出任何有效的数据模型;海量数据将永远没办法转换为有用的数据。 为什么谷歌能做得到?

    95850

    崖山数据库 YMP 迁移工具使用体验

    对象一键迁移:一键整合所有对象元数据迁移,充分考虑对象依赖关系,及对数据迁移的影响,并采用端到端性能最优的执行策略,智能决策元数据对象创建顺序。...数据高性能迁移:基于数据库原生高性能导入导出能力,采用流水线多级并行架构,实现原厂级高性能数据迁移。...应用场景:YMP是面向数据迁移场景提供的离线评估迁移工具,能够解决迁移兼容性与工作量预估、异构数据库元数据迁移以及数据快速迁移的问题。...支持对迁移范围的灵活选择,支持不同情景下的对象冲突策略选择,迁移前风险检查和实时展示迁移进度和对象级迁移结果。 数据迁移:提供表数据迁移能力。...在元数据迁移过程中会并行把对象在目标端的执行,以提升迁移效率。该参数配置元数据迁移的目标端DDL执行的并行线程数,决定了连接数据库的执行最大连接数,不设置默认20。

    27910

    Linux下快速迁移海量文件的操作记录

    有这么一种迁移海量文件的运维场景:由于现有网站服务器配置不够,需要做网站迁移(就是迁移到另一台高配置服务器上跑着),站点目录下有海量的小文件,大概100G左右,图片文件居多。...那么问题来了,这种情况下的网站数据要怎么迁移呢?另外,此网站还在运行中,白天是断然不能停止了,只能运行深夜停掉几个小时。 可以采用的方案如下: 1.利用rsync进行同步。...并迁移网站代码。 2.如果网速快,网络稳定,可以考虑tar打包(压缩)后传输。不过打包后,要在一个停站周期内完成迁移,对于100G的量的文件传输,这种方法不太靠谱。...4.如果数据不重要,通过HTTP(wget)传输会更快些。 5.直接把旧站服务器的硬盘拿下来,然后将硬盘挂载到新站服务器上,再在新服务器上将nginx站点目录指向新挂载的硬盘。...操作思路: 直接用rsync把文件一个一个的迁移过去,因为文件数量比较大,如果一下子在循环脚本里操作,会非常慢。 所以决定用分批操作,采用化整为零的方法。

    2.8K70

    海量数据迁移数据加载流程(r4笔记第88天)

    在之前的博文中分享了关于数据抽取流程的一些思路,整体来说,数据的抽取是辅助,数据的加载是关键。加载的过程中每一步需要格外关注,稍有偏差就可能造成数据的损坏或者丢失。...把一些潜在的数据冲突问题提前发现,提前修复,如果在大半夜的数据加载中发现了问题,再去修复似乎就晚了很多,而且带着疲惫去尝试修复数据真实苦不堪言。 右边的图是数据加载的一个流程图。...通过比较只读用户(即目标数据)和外部表用户中的外部表数据(源数据),可以灵活的匹配主键列,非唯一性约束列可以很有效的进行数据的冗余比较。...有了这种方式,在多次的数据迁移中,都可以在数据加载前提前进行数据检查。着实让人放心不少,对于提升自信心是很有帮助的。一旦发现了数据问题,就可以及时发现,提前发现,让专门的团队及时修复数据。...至于最关键的数据加载,就是外部表用户和目标数据用户之间的数据关联了。可以通过insert append的方式进行数据的导入。可以根据数据情况进行切分粒度的控制。

    1.6K30

    海量数据迁移数据抽取流程 (r4笔记第72天)

    采用外部表抽取数据的流程图如下: 大体标注了一下抽取的基本结构,我们会尽量保证不去碰原本的数据源,会创建两个临时的用户,一个是只读用户,这个用户上只有同义词,只具有数据源中的select权限。...这就对应上面红色标注的1,而另外一个用户是外部表用户,所有通过创建外部表都会在这个用户下进行,生成了dump文件之后,我们可以随时删除外部表,这个时候为了保证相关的drop操作不会牵扯到数据源,外部表用户会继承只读用户中的...当开始抽取数据的时候,会去查找是否有权限读取数据,会找到只读用户,最终能够读取数据源的数据,这就对应红色标注的3,4 当满足了基本的条件,就开始生成外部表的dump,可以为一个表生成多个dump,而且这个过程是并行的

    1.4K40

    什么是海量数据 海量数据与大数据的关系

    在人们还没有搞明白大数据的情况下,又出现了一个海量数据海量数据与大数据的关系是什么,他们有什么关联吗?还是大数据的升级版才是海量数据,今天来聊一下海量数据与大数据的关系吧!...image.png 1、什么是海量数据,什么是大数据 所谓的海量数据从字面上理解就是数据多到已经用大海来形容了,现实中也确实如此。...2、海量数据与大数据的关系 海量数据与大数据的关系其实是相互的,海量数据可以包含在大数据里面,同样大数据也可以包含在海量数据里面。...海量数据需要找合适的数据来进行计算时,大数据也可以将海量数据分解并帮助其计算完成。所以海量数据与大数据的关系是相互的,在对方有困难的时候都会伸出手来帮助,海量数据与大数据的关系一定是不错的。...海量数据与大数据通俗的说就是,海量数据有时候不能一个人完成的事情会找帮手一起完成,而大数据则是喜欢把一个大任务分解成多个小任务再逐一完成。

    4K30

    新版 Mac 体验迁移指南

    迁移过程 简单开机设置后,需要把之前的开发环境迁移过来,我这里没有使用 Time Machine,因为之前的本乱七八糟装了很多软件,新买的本还是有一点洁癖。...大概在 14 年我写了篇 Mac 最佳实践(点击文末“阅读原文”可查看),这次迁移基本就是按照这篇文章进行,Homebrew 安装后再去安装其他软件,基本常用软件都可以一条命令安装,感谢 Homebrew...新版 Mac 体验 新版 Mac 较之前版本最显著的区别有两点:增加了 Touch Bar 与 蝶式键盘。下面简单说下我的使用感受,希望对大家选购 Mac 有帮助。...OK,上面体验均是我个人观点,有考虑入手的同学建议先去实体店体验后再购买。 希望各位同学都能早入坑。

    98410

    海量数据迁移之分区并行抽取(r2笔记53天)

    在之前的章节中分享过一些数据迁移中并行抽取的细节,比如一个表T 很大,有500G的数据,如果开启并行抽取,默认数据库中并行的最大值为64,那么生成的dump文件最50多为64个,每个dump文件就是7.8G...,还是不小,况且在做数据抽取的时候,资源被极大的消耗,如果资源消耗紧张,可能可用的并行资源还不到64个。...分区表的数据基本都是分散在各个分区的,考虑数据的不均匀分布,那么每个分区的数据可能在5~10G吧。...参照这个思想,假设开启并行,比如200M为一个基准点来切分分区表,比如分区表的某个分区含有5G的数据,那么需要开启25个并行即可,文件就会被切分为200M的很多细粒度的dump文件。...目前我设定的基准为1G,比如一个分区表T,大小在1.5G,那么可以考虑开启分区+并行,如果分区表的大小为500M,那么就可以不用考虑使用分区+并行了,因为在每个分区中的数据可能相对比较少。

    1K80

    海量数据迁移之外部表切分(r2笔记52天)

    在前几篇中讨论过海量数据的并行加载,基本思路就是针对每一个物理表都会有一个对应的外部表,在做数据迁移的时候,如果表有上百G的时候,一个物理表对应一个外部表性能上会没有任何提升。...如果需要做数据插入的时候,对undo是极大的挑战,从某种程度上而言,性能应该要比datapump要差。这个时候可以考虑一个物理表对应多个外部表,比如一个表有100G。...可以考虑生成100个external dump 文件,然后加载生成100个外部表,每个dump文件对应一个外部表,这样做数据的插入的时候就相对容易控制了。...每一个外部表的数据加载到目标库之后,commit一次,就能及时的释放Undo资源,提高性能。

    94170

    BitSet处理海量数据

    关于BitSet BitSet是java.util下包下,JDK1.0中就已经引入这个数据结构。 如果你对数据结构的"位图"比较熟悉,那么BitSet就很好理解了。...位图定义了数据的存在性可以用bit位上的1和0来表示,一个bit有两个值,0或1。而BitSet正是因为采用这种数据结构,在判断“数据是否存在”的场景会经常出现。...因为BitSet内部定义来long数组,而long在内存中占用8个字节,即64bit,BitSet中每一个bit都可以保存一个int数据(准确的说是用0和1来说明int数据是否存在),那么也就是我们用了...使用BitSet 写这篇文章,也是因为遇到了相关的问题: 我需要获取某一天没有登陆的用户列表 最初我的解决方案:用户活跃数据是存在hive中,通过调用接口返回到List中。...然后遍历全部用户,通过list.contains()来进行判断(这可能就是一直没有接触过海量数据造成的),那么效果就不用说了,挺低的。

    1.5K40

    亚马逊数据迁移:100万GB数据运输是一个什么体验

    由于企业数据体积庞大,因此如果依靠一般的互联网上传备份数据的话,那么将消耗大量的时间。...据介绍,亚马逊在收到来自客户的公司数据云备份申请之后就会派AWS Snowmobile卡车开到其数据中心,并通过光纤连接将其硬盘驱动器连接到客户公司数据中心迁移,一辆卡车可以携带高达100亿字节(即100...万GB)的数据,将其再开回Amazon的数据中心,并上传到云存储当中。...亚马逊指出,虽然使用卡车搬运数据的方式看起来很不互联网,但却是应对海量数据上传时最切实际的做法。目前,即使使用光纤连接,上传100PB的数据将需要20多年时间。...不过这项服务的花费也并不便宜,费率从每GB数据0.005美元起。一辆满载数据的Snowmobile卡车,客户大约需要支付50万美元。而针对那些数据量较小的客户,亚马逊还支持客户直接将数据硬盘进行寄送。

    1.6K110

    海量数据处理

    海量数据处理是基于海量数据上的存储、处理、操作。 所谓海量,就是数据量很大,可能是TB级别甚至是PB级别,导致无法一次性载入内存或者无法在较短时间内处理完成。...但是 面向结构化数据存储的关系型数据库已经不能满足当今互联网数据快速访问、大规模数据分析挖掘的需求。 它主要缺点: 1) 对于半结构化、非结构化的海量数据存储效果不理想。...像电子邮件、 超文本、标签(Tag)以及图片、音视频等各种非结构化的海量数据。 2)关系模型束缚对海量数据的快速访问能力: 关系模型是一种按内容访问的模型。...3)在海量规模下, 传统数据库一个致命弱点, 就是其可扩展性差。...主要特性:   ● 分布式   ● 基于column的结构化   ● 高伸展性 2 海量数据处理 海量数据处理就是如何快速地从这些海量数据中抽取出关键的信息,然后提供给用户

    1.4K10
    领券