1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别...,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It...= 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir(...,但由于SD卡内无文件,无法匹配人脸 ?...按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。
这是陈老师测试新人的一个脑筋急转弯。如果一对一的话,被问到同学往往警惕性比较高,回答的质量也相对高。所以最好的测试方法是在大家吃完午饭闲聊的时候,冷不丁的丢到人...
本文主要介绍了一种简单的人脸检测方法,通过随机裁剪图像并训练神经网络来检测人脸。该方法可以用于小规模数据集的人脸检测,并且可以通过调整代码来适应不同大小的数据集...
不多说了,直接代码吧: 生成AFLW_ann.txt的代码,其中包含图像名称 和 图像中人脸的位置(x,y,w,h); ** AFLW中含有aflw.aqlite文件。...f: f.writelines("%s\n" % line for line in list_annotation) AFLW图片都整理到flickr文件下(含0,1,2三个文件),生成人脸的程序...(并且对人脸进行了左右镜像): import os from PIL import Image from PIL import ImageFile # ImageFile.LOAD_TRUNCATED_IMAGES
一、压力测试平台-----优测 优测官网 二、10000vum免费试用 1.单接口压测 创建单接口任务: 执行任务及查看报告: 导出报告: pdf格式报告: 2.全链路压测 创建全链路计划...所以我这里想到的是grafana,利用grafana动态实时的资源可视化,结合优测,应该效果非常棒.** 四、总结 问题: 本来想结合业务登录接口去坐个压测,结果发现,优测不支持application
人脸检测历险记 可能跟我一样,人脸检测是很多人学习图像处理的第一个自驱动型的任务,OpenCV刚上手没几天可能就想先跑一跑人脸检测,然后一个坑接着一个坑的往里跳。...上面用的是深度学习模型的人脸检测,但是在此之前还是稍微回顾下OpenCV自带的人脸检测器。...OpenCV自带的人脸检测 OpenCV自带了基于级联分类器的人脸检测模型,只能检测正脸,在前深度学习时代,效果已经是很好的了。...人脸卡通化 仅仅是人脸检测,显得略微有些没意思,所以在人脸检测的基础上,加点其他的更有意思的东西,比如上次刚玩过的卡通化。...,获取人脸框和人脸关键点的位置 稍微扩充下人脸框,进行卡通化操作 把卡通化后的人脸贴回原图中人脸的位置 完整效果 看一下完整的效果吧:【视频有声提示!】
.xml文件路径为本地绝对路径,应用代码时需要修改。 代码如下: #include "opencv2/objdetect/objdetect.hpp" #in...
该项目基于讯飞SDK实现的人脸检测,使用face++的webapi实现的人脸注册以及人脸识别。...所以在整个流程中应该包含以下几个步骤 人脸检测 (FD引擎) 即从摄像头预览中检测到人脸的存在,并且使用一个矩形框出人脸的范围。...人脸识别 (FR引擎) 当检测出人脸时,对人脸进行识别,如果人脸特征集合中存在该人脸信息,读取出该人脸信息及人员信息。...,检测图片中的人脸信息(人脸 Rect、角度),此处的 Rect 是图片中人脸位置的矩形。...第三步: 经过上述的两部,我们已经成功的从图片中识别到了人脸,并且将该人脸在图片中的位置获取到了,接下来我们要做的就是使用 FR 人脸识别引擎识别该位置人脸中的特征信息。 if (!
压测工具,上传到框架会员群啦,平时多测测,健康一百分。...观察:在逐步加压的过程,需要观察压测工具返回的访问时间、成功率、 也要观察服务器的cpu、内存使用率等指标。 如出现指标异常要及时停止压测,,则说明流量达到当前的瓶颈,需要停止压测分析并排查原因。...待排查和解决问题后再进行下一步压测。 哪些分析方法呢?...,进行性能调优 响应时间未达标:对照错误日志、链路追踪结果、服务器性能指标、数据库/中间件监控指标,找到响应时间过长的具体原因 吞吐量未达标:如果成功率和响应时间均达标,建议不断增加模拟用户数,重新压测,...通常以使用率达到70%-80%为瓶颈),qps、rt、报错率等指标出现异常,此时需要重复上一步,排查问题并优化 第二种情况:rt、报错率等指标未出现异常,服务器cpu、内存使用率即将达到瓶颈,且未达到预期的压测目标
相信很多前端开发在写单测的时候,最大的问题就是:“我应该测什么东西?” 没错,解决问题不是最难的,发现问题才是!知道要测哪个远比怎么测重要很多!...但是知道如何测试只是成功的一半,知道要测什么才是更重要的另一半。 永远记住为什么我们要测试 我们写测试是因为要确保我们的应用程序在用户使用它们时能够正常工作。...很多人在做 React 代码测试时,经常会想到一些让他们不断测 “实现细节” 的测试点。...(比如:firebase、redux store、router、media query) 该从何测起? 现在我们都清楚应该要对单测组件或者页面组件测什么了,那你该从何测起呢?
对于人脸关键点检测和跟踪,有从传统方法向基于深度学习的方法转变的趋势。...近年来,卷积神经网络模型成为人脸关键点检测,主要是深度学习模型,并且大多采用全局直接回归或级联回归框架。这些方法大致可分为纯学习法和混合学习法。...纯学习方法直接预测人脸关键点位置,而混合学习方法则将深度学习方法与计算机视觉投影模型相结合进行预测。...Pure-learning methods 纯学习方法:这类方法使用强大的CNNs模型从人脸图像中直接预测关键点位置。...Las Vegas, NV (2016))建立了一个密集的三维人脸模型。然后,采用迭代级联回归框架和深度CNN模型对三维人脸形状系数和姿态参数进行更新。
基本概念 人脸是个人重要的生物特征,业界很早就对人脸图像处理技术进行了研究。人脸图像处理包括人脸检测、人脸识别、人脸检索等。...人脸检测是在输入图像中检测人脸的位置、大小;人脸识别是对人脸图像身份进行确认,人脸识别通常会先对人脸进行检测定位,再进行识别;人脸检索是根据输入的人脸图像,从图像库或视频库中检索包含该人脸的其它图像或视频...人脸检测与识别的应用 实名认证 人脸考勤 刷脸支付、刷脸检票 公共安全:罪犯抓捕、失踪人员寻找 3. 传统人脸检测与人脸识别方法 1)人脸检测 基于知识的人脸检测法。...它将典型的人脸形成规则库对人脸进行编码。通常, 通过面部特征之间的关系进行人脸定位。 基于模板匹配的人脸检测法。...该数据集包含有200K张人脸图片,人脸属性有40多种,主要用于人脸属性的识别。 5.
还记的这篇OpenCV即时上手可学习可商用的项目 接下来准备把其中的代码公开,欢迎一起交流学习 人脸识别是个说小不小的工程,在完成这个项目之前,先把人脸检测熟悉一下。...人脸检测用到的函数如下: void detectMultiScale( InputArray image, CV_OUT std::vector<Rect...; namedWindow("display"); imshow("display", img); /*********************************** 1.加载人脸检测器...******************************/ // 建立级联分类器 CascadeClassifier cascade; // 加载训练好的 人脸检测器(.xml)...='k') ; destroyWindow("display"); destroyWindow("face_detect"); return 0; } 效果如图: 打开相机进行人脸检测
、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0...* */ public class FaceVideo { // 初始化人脸探测器 static CascadeClassifier faceDetector;...,识别成功保存图片到本地 getVideoFromCamera(); // 2- 从本地视频文件中识别人脸 // getVideoFromFile();...// 3- 本地图片人脸识别,识别成功并保存人脸图片到本地 face(); // 4- 比对本地2张图的人脸相似度 (越接近1越相似) String basePicPath...: 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。
哈喽,各位小伙伴早上好,最近蛮多事情的前两天去检查了视力发现又降了,坐在电脑前的你要注意休息呀!
上一节我们通过VAE网络完成了人脸生成效果。VAE网络一个特性是会把人脸编码成一个含有200个分量的向量,反过来说在特定分布范围内的含有200个分量的向量就对应一张人脸。...,该新向量就会对应一个人脸,而且这个人脸就会同时具有人脸A和B的特点,如果我们增大参数alpha,那么生成向量对应的人脸特征就会更像人脸B,如果我们减少alpha的值,生成向量对应的人脸就更像人脸A....接下来我们看看如何实现人脸的转变特效,首先我们先出数据图片中选出具有特定特征的人脸图片,例如”戴墨镜“,然后使用编码器得出”戴墨镜“人脸图片的特征向量,然后我们再选取不带墨镜的人脸图片,计算其特征向量,...处于最左和最右边的图像时我们输入的两张人脸图片,中间人脸是将一边人脸图片对应的向量滑向另一边时所产生的人脸,我们注意到中间人脸图片是左右两张人脸图片特征的混合。...回到deepfake或zao这样的变脸应用,他们的原理就是先将计算原来视频中人脸变化所对应的不同向量,然后计算用户的人脸向量,然后将用户人脸向量”滑向“视频中人脸当前表情对应向量从而实现用户人脸展现出视频中人脸的同样表情
降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸...,其他可以不写 scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确 minNeighbors = 1, #为5表示有5次重叠才认为人脸存在... minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:
.imread("C:/Users/xpp/Desktop/Lena.png")#读取图像 detector=MTCNN() face_list=detector.detect_faces(img)#人脸检测与对齐...(img,keypoints["mouth_right"],1,(0,0,255),2) cv2.imwrite("C:/Users/xpp/Desktop/result.png",img) 算法:人脸检测是将人脸区域检测与人脸关键点检测放在了一起...P-Net:Proposal Net,实现人脸候选框提取 R-Net:Refine Net,在P-Net输出结果的基础上进一步去除错误的候选框 O-Net:Output Net,与R-Net类似,最终输出人脸
压测工具部署:Elasticsearch压测工具esrally部署指南 - 云+社区 本文另有延伸:大数据生态关于压力测试的内容 - 云+社区 背景 在大数据时代的今天,业务量越来越大,每天动辄都会产生上百...track: 即赛道的意思,这里指压测用到的样本数据和压测策略,使用 esrally list tracks 列出。...如果你想针对已有的 es 进行压测,则使用该模式; track-params:对默认的压测参数进行覆盖; user-tag:本次压测的 tag 标记; client-options:指定一些客户端连接选项...压测标准 在压测的过程中,需要了解到各个指标的含义。但是网络上没有完整的文档,所以这里做一个详细的总结。...压测指标 压测任务 指标含义 评判标准 Cumulative indexing time of primary shards - 主分片累计索引时间 越小越好 Min cumulative indexing
1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像...该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。
领取专属 10元无门槛券
手把手带您无忧上云