首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

关于《Python数据挖掘入门与实战》读书笔记四(转换器和流水线)

数据预处理,数据挖掘过程中需要对数据集进行预处理进行数据的转换。 Sklearn提供了很多内置的标准的转换器,比如。...为将数值型特征的二值化,使用sklearn.preprocessing.Binarizer,大于阈值的为 1,反之为0。 此外sklearn也提供了流水线,流水线的作用是使数据挖掘步骤标准化。...流水线的输入为一连串的数据挖掘步骤,其中最后一步必须是估计器,前几步是转换器。输入的数据集经过转换器的处理后,输出的结果作为下一步的输入。最后,用位于流水线最后一步的估计器对数据进行分类。...# 用枚举函数来获得每行的索引号,在下面更新数据集X中的某一个体时会用到行号 for i,row in enumerate(reader): # 获取每一个个体的前34个值,将其强制转化为浮点型...# 输入的数据集经过转换器的处理后,输出的结果作为下一步的输入 # 最后,用位于流水线后一步的估计器对数据进行分类。

32210

手把手带你开启机器学习之路——房价预测(二)

这样设计的好处是方便我们使用sklearn中的流水线(pipeline),还允许我们自定义转换器,这样能够把一系列的步骤统一起来。...自定义添加属性的转换器 为了能与sklearn中的流水线无缝衔接,我们需要实现一个含有fit,transform,fit_transform方法的类。...构造转换流水线 sklearn中提供了Pipeline类,称为流水线类。它的构造函数会通过一系列的名称/估算器配对来定义步骤的序列,使数据转换按照正确的步骤来执行。...sklearn中提供了相应的FeatureUnion类。注意两条流水线需要从选择转换器开始,选择出相应的待处理属性。完整的代码如下: 自定义选择转换器 ? 定义两条流水线,然后合并 ?...除了自定义选择转换器,新版本的sklearn中也有可以直接使用的ColumnTransformer,这样就省去了自己定义选择器的步骤,代码如下所示,可以看到两种方式的结果是完全一样的(最后一行的代码返回

96810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python中的sklearn入门

    Python中的sklearn入门介绍scikit-learn(简称sklearn)是一个广泛使用的Python机器学习库,它提供了丰富的功能和工具,用于数据挖掘和数据分析。...加载数据集在sklearn中,许多常用的数据集都可以直接从库中加载。...可以使用​​train_test_split​​函数将数据集分割为训练集和测试集:pythonCopy codefrom sklearn.model_selection import train_test_splitX_train...参数选择的难度:sklearn算法中的一些模型具有许多可调参数,选择合适的参数可能需要进行大量的试验和调整。缺乏自动化的参数选择和调整工具,可能使得参数选择过程相对复杂和繁琐。...XGBoost:XGBoost是一个梯度提升树的机器学习库,它提供了强大的集成学习功能,可以应用于回归、分类和排名等任务。相对于sklearn中的决策树算法,XGBoost在精度和性能上有所提升。

    38530

    sklearn中的nearest neighbor

    KNN介绍 基础原理没什么介绍的,可以参考我的KNN原理和实现,里面介绍了KNN的原理同时使用KNN来进行mnist分类 KNN in sklearn sklearn是这么说KNN的: The principle...接口介绍 sklearn.neighbors 主要有两个: KNeighborsClassifier(RadiusNeighborsClassifier) kNeighborsRegressor (RadiusNeighborsRefressor...: weights(各个neighbor的权重分配) metric(距离的度量) 例子 这次就不写mnist分类了,其实也很简单,官网的教程就可以说明问题了 import numpy as np import...matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors,...例子 同样是官网的例子 import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors np.random.seed

    88370

    Scikit-learn使用总结

    学习使用scikit-learn的过程中,我自己也在补充着机器学习和数据挖掘的知识。这里根据自己学习sklearn的经验,我做一个总结的笔记。另外,我也想把这篇笔记一直更新下去。...1.3 流水线 sklearn.pipeline包 流水线的功能: 跟踪记录各步骤的操作(以方便地重现实验结果) 对各步骤进行一个封装 确保代码的复杂程度不至于超出掌控范围 基本使用方法: 流水线的输入为一连串的数据挖掘步骤...输入的数据集经过转换器的处理后,输出的结果作为下一步的输入。最后,用位于流水线最后一步的估计器对数据进行分类。 每一步都用元组( ‘名称’,步骤)来表示。现在来创建流水线。...cross_val_predict:交叉验证的预测 1.10 网络搜索 包:sklearn.grid_search 网格搜索最佳参数 GridSearchCV:搜索指定参数网格中的最佳参数 ParameterGrid...3.1 创建自己的转换器 在特征抽取的时候,经常会发现自己的一些数据预处理的方法,sklearn里可能没有实现,但若直接在数据上改,又容易将代码弄得混乱,难以重现实验。

    1.4K71

    Sklearn中的CV与KFold详解

    关于交叉验证,我在之前的文章中已经进行了简单的介绍,而现在我们则通过几个更加详尽的例子.详细的介绍 CV %matplotlib inline import numpy as np from sklearn.model_selection.... 0.96666667 0.96666667 1. ] Accuracy: 0.98 (+/- 0.03) 同时我们也可以为cross_val_score选择不同的性能度量函数...中的管道机制)变得更加契合 from sklearn import preprocessing from sklearn.pipeline import make_pipeline clf_pipline...中的CV还有cross_val_predict可用于预测,下面则是Sklearn中一个关于使用该方法进行可视化预测错误的案例 from sklearn import datasets from sklearn.model_selection...至此基本的KFlod在Sklearn中都实现了 注意 i.i.d 数据是机器学习理论中的一个常见假设,在实践中很少成立。

    74020

    使用Scikit-Learn pipeline 减少ML项目的代码量并提高可读性

    在交叉验证中,安全pipeline有助于避免将测试数据中的统计信息泄漏到训练好的模型中 下面Scikit-learn pipelines流程图 ?...3)列转换器:ColumnTransformer用于将上述转换应用于数据帧中的正确列,我将它们传递给我,这是我在上一节中定义的数字和分类特征的两个列表。...4)使用Estimator(Classifier)进行流水线操作:在这里,我将Column Transformer与最终的Transformer进行流水线化,后者是Estimator(我选择Logistic...方案2改进:采用Scikit-learn pipeline (最少代码) 在Scikit-learn中,还有两个以上的函数与我们在上述实现中使用的函数(Column Transformer和pipeline...实现结构与前面完全相同,唯一的区别是,我们只传递需要的对象,而不是在函数内部传递元组。

    91930

    带你建立一个完整的机器学习项目

    转换器的作用是将一些数据处理的操作集中在一起执行,比如前面叙述的清洗、属性组合等,另外可以将自制的转换器与sklearn的流水线无缝衔接工作。...转换流水线 流水线的作用时创建一种模式,使得数据可以按照一定顺序进行处理和转化。...例如下面是一个完整的处理数值和类别属性的流水线: from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline...其表示分别为:子流水线数据操作-》选择转化器-》缺失值处理-》属性组合-》标准化-》子流水线分类处理-》选择转化器-》分类标记为one-hot向量 对于选择转换器的解释:通过选择对应的属性(数值或分类)...Scikit-Learn 没有工具来处理 PandasDataFrame,因此我们需要写一个简单的自定义转换器来做这项工作: #这一部分最好写在前面 from sklearn.base import BaseEstimator

    66230

    Java中的转换器设计模式

    在这篇文章中,我们将讨论 Java / J2EE项目中最常用的 Converter Design Pattern。...目的 转换器设计模式的目的是为相应类型之间的双向转换提供一种通用的方式,允许类型无需彼此了解的简洁的实现。此外,转换器设计模式引入了双向收集映射,将样板代码减少到最小。...源代码 转换器设计模式是一种行为设计模式,允许在相应类型(如DTO和逻辑同构类型的域表示)之间进行双向转换。此外,该模式还引入了一种在类型之间转换对象集合的通用方法。...在本例中,我们将把customerd转换为customer实体,反之亦然,我们还将在类型之间转换对象集合。 步骤1:让我们创建一个通用转换器。...customers.stream().map(this::convertFromEntity).collect(Collectors.toList()); } } 步骤2:让我们创建一个简单客户转换器的实现

    1.5K40

    玩转Mybatis中的类型转换器TypeHandler

    所以我们可以选择更好的处理方式。 2.Mybatis中的TypeHandler 如果你ORM框架用的是Mybatis。那么将很容易通TypeHandler接口解决这个问题。...这是Mybatis提供的一个类型转换接口,将数据库的jdbc类型和java中的类型进行相互转换。接下来我们将一步一步地来研究这个接口。 2.1 TypeHandler ?...通过上述例子中的@MappedJdbcTypes和@MappedTypes来进行绑定类型转换关系,也可以通过xml的typeHandler元素中的jdbcType或者javaType来指定。...2.6 免注册TypeHandler 我们这里只讲最常用xml中的配置,你可以举一反三: 一种在resultMap元素中声明一般用来查询。一定要注意2.5中的一些原则。 ?...2.7 注册TypeHandler 在配置中声明注册TypeHandler,然后Mybatis根据两种类型会自动匹配。所以这里还是要强调2.5中的核心要点。

    4.3K20

    大数据开发:Spark MLlib组件学习入门

    其实,Spark MLlib在数据挖掘上,与sklearn工具也是非常行相似的,也是Estimator,Transformer,Pipeline为主,如果有sklearn的基础,那么学习MLlib是会非常轻松的...并且,MLlib本身比sklearn还要简单一些,因为MLlib库中支持的功能相对更少一些,并且MLlib基于DataFrame数据比sklearn基于numpy array会更加直观一些。...二、MLlib基本概念 DataFrame:MLlib中数据的存储形式,其列可以存储特征向量,标签,以及原始的文本,图像。 Transformer:转换器。具有transform方法。...它接受一个DataFrame数据作为输入后经过训练,产生一个转换器Transformer。 Pipeline:流水线。具有setStages方法。...Mllib支持网格搜索方法进行超参调优,相关函数在spark.ml.tunning模块中。 关于大数据开发学习,Spark MLlib组件学习入门,以上就为大家做了大致的介绍了。

    87140

    sklearn中的集成学习之Voting Classifier

    生活中我们找别人询问买东西、到多个医院问诊询问意见,这些其实都是集成学习。 在机器学习中,我们可以对KNN、逻辑回归、SVM、决策树、神经网络等预测的结果进行投票,少数服从多数最终决定预测结果。...在sklearn中提供了一个Voting Classifier的方法进行投票。这是属于集成学习的一种。Voting Classifier分为Hard和Soft两种方式。 1....我们构造如下数据: import numpy as np import matplotlib.pyplot as plt from sklearn import datasets X, y = datasets.make_moons...Hard Voting实现: from sklearn.ensemble import VotingClassifier voting_clf = VotingClassifier(estimators...Soft Voting Classifier 其实对于一种方法一票,少数服从多数的方法有时候是不合理的,更合理的方法应该是有权值的。类似于唱歌比赛的投票,专业评审的分值会高,普通观众的分值更低。

    1.9K20

    【python】sklearn中PCA的使用方法

    from sklearn.decomposition import PCA PCA 主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理...sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False) 参数: n_components: 意义:PCA算法中所要保留的主成分个数...函数返回值:调用fit方法的对象本身。比如pca.fit(X),表示用X对pca这个对象进行训练。...拓展:fit()可以说是scikit-learn中通用的方法,每个需要训练的算法都会有fit()方法,它其实就是算法中的“训练”这一步骤。因为PCA是无监督学习算法,此处y自然等于None。...实例: import numpy as np from sklearn.decomposition import PCA X = np.array([[-1, -1], [-2, -1], [-3, -

    1.5K20

    Python 手写 Sklearn 中的 kNN 封装算法

    摘要:用 Python 一步步写出 Sklearn 中的 kNN 封装算法。...Python 手写机器学习最简单的 kNN 算法 虽然调用 Sklearn 库算法,简单的几行代码就能解决问题,感觉很爽,但其实我们时处于黑箱中的,Sklearn 背后干了些什么我们其实不明白。...但在上面的 Sklearn 中为什么这里还 fit 拟合这一步操作呢,实际上是可以不用的,不过 Sklearn 的接口很整齐统一,所以为了跟多数算法保持一致把训练集当成模型。..._y_train = y_train 14 return self 首先,我们需要把之前的函数改写一个名为 kNNClassifier 的 Class 类,因为 Sklearn 中的算法都是面向对象的...如果你对类还不熟悉可以参考我以前的一篇文章: Python 的函数 def 和类 Class(可点击) 在__init__函数中定义三个初始变量,k 表示我们要选择传进了的 k 个近邻点。 self.

    1.6K10

    盘一盘 Python 系列 8 - Sklearn

    首先从 sklearn 下的 preprocessing 中引入 OrdinalEncoder,再创建转换器起名 OE,不需要设置任何超参数。 下面结果和上面类似,就不再多解释了。...首先引入 Pipeline,再引入 处理缺失值的转换器 SimpleImputer 做规划化的转换器 MinMaxScaler 第 4-7 行创建了流水线,范式非常简单,就在 Pipeline() 里一个输入...来验证上面流水线的参数,我们可以按顺序来运行这两个转换器,结果是一样的。 FeatureUnion 如果我们想在一个节点同时运行几个估计器,我们可用 FeatureUnion。...知识点 代码不难,主要就是 transform 函数中,将输入的 DataFrame X 根据属性名称来获取其值。...可组成 模块都能重复「连在一起」或「并在一起」使用,比如两种形式流水线 (pipeline) 任意转换器序列 任意转换器序列 + 估计器 有默认 Sklearn 给大多超参数提供了合理的默认值,大大降低了建模的难度

    2.2K51

    盘一盘 Python 系列 8 - Sklearn

    首先从 sklearn 下的 preprocessing 中引入 OrdinalEncoder,再创建转换器起名 OE,不需要设置任何超参数。 下面结果和上面类似,就不再多解释了。...首先引入 Pipeline,再引入 处理缺失值的转换器 SimpleImputer 做规划化的转换器 MinMaxScaler 第 4-7 行创建了流水线,范式非常简单,就在 Pipeline() 里一个输入...来验证上面流水线的参数,我们可以按顺序来运行这两个转换器,结果是一样的。 FeatureUnion 如果我们想在一个节点同时运行几个估计器,我们可用 FeatureUnion。...知识点 代码不难,主要就是 transform 函数中,将输入的 DataFrame X 根据属性名称来获取其值。...可组成 模块都能重复「连在一起」或「并在一起」使用,比如两种形式流水线 (pipeline) 任意转换器序列 任意转换器序列 + 估计器 有默认 Sklearn 给大多超参数提供了合理的默认值,大大降低了建模的难度

    1.8K70

    非常详细的sklearn介绍

    首先从 sklearn 下的 preprocessing 中引入 OrdinalEncoder,再创建转换器起名 OE,不需要设置任何超参数。 下面结果和上面类似,就不再多解释了。...首先引入 Pipeline,再引入 处理缺失值的转换器 SimpleImputer 做规划化的转换器 MinMaxScaler 第 4-7 行创建了流水线,范式非常简单,就在 Pipeline...来验证上面流水线的参数,我们可以按顺序来运行这两个转换器,结果是一样的。 FeatureUnion 如果我们想在一个节点同时运行几个估计器,我们可用 FeatureUnion。...知识点 代码不难,主要就是 transform 函数中,将输入的 DataFrame X 根据属性名称来获取其值。...可组成 模块都能重复「连在一起」或「并在一起」使用,比如两种形式流水线 (pipeline) 任意转换器序列 任意转换器序列 + 估计器 有默认 Sklearn

    1.2K10

    【优质原创】分享几个Sklearn模块中不为人知又超级好用的API函数

    相信对于不少机器学习的爱好者来说,训练模型、验证模型的性能等等用的一般都是sklearn模块中的一些函数方法,今天小编来和大家聊一下该模块中那些不那么为人所知的API,可能知道的人不多,但是十分的好用。...极值检测 数据集当中存在着极值,这个是很正常的现象,市面上也有很多检测极值的算法,而sklearn中的EllipticalEnvelope算法值得一试,它特别擅长在满足正态分布的数据集当中检测极值,代码如下...,结果中“-1”对应的是极值,也就是30、10、15、30这些结果 特征筛选(RFE) 在建立模型当中,我们筛选出重要的特征,对于降低过拟合的风险以及降低模型的复杂度都有着很大的帮助。...然后从当前的特征集合中移除最不重要的特征。在剩下的特征集合中不断地重复递归这个步骤,直到最终达到所需要的特征数量为止。...另外一种特征筛选的算法是SelectFromModel,和上述提到的递归式特征消除法来筛选特征不同的是,它在数据量较大的情况下应用的比较多因为它有更低的计算成本,只要模型中带有feature_importance

    36710
    领券