首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

流氓图的支配子树

Requests to the ChatCompletions_Create Operation under Azure OpenAI API version 2024-02-15-preview have exceeded token rate limit of your current OpenAI S0 pricing tier. Please retry after 3 seconds. Please go here: https://aka.ms/oai/quotaincrease if you would like to further increase the default rate limit.

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 数据结构面试经典问题汇总及答案_数据结构基础面试题

    1.数组和链表的区别,请详细解释。 从逻辑结构来看: a) 数组必须事先定义固定的长度(元素个数),不能适应数据动态地增减的情况。当数据增加时,可能超出原先定义的元素个数;当数据减少时,造成内存浪费;数组可以根据下标直接存取。 b) 链表动态地进行存储分配,可以适应数据动态地增减的情况,且可以方便地插入、删除数据项。(数组中插入、删除数据项时,需要移动其它数据项,非常繁琐)链表必须根据next指针找到下一个元素 从内存存储来看: a) (静态)数组从栈中分配空间, 对于程序员方便快速,但是自由度小 b) 链表从堆中分配空间, 自由度大但是申请管理比较麻烦 从上面的比较可以看出,如果需要快速访问数据,很少或不插入和删除元素,就应该用数组;相反, 如果需要经常插入和删除元素就需要用链表数据结构了。

    02

    【Nature 封面论文】机器学习掀起材料革命,人工智能或将颠覆人类科研方式

    【新智元导读】昨日Nature封面论文:哈佛大学研究者借助机器学习算法,利用“废弃”数据成功预测新材料的合成,引发学界激论:人工智能真能加速发现神奇新材料吗?该研究所用的“计算材料学”结合计算机模型和机器学习,是对传统研究方法的革新。计算机科学和人工智能的影响已经拓展到越来越多的领域,机器学习或将改变未来科研方式。 发现一种新的材料是非常艰难的过程,通常要经历无数次失败,偶尔在机缘巧合之下取得成果,还要费劲功夫反向检测这种新材料的性质。但有一批材料科学家转换思路,使用计算机模型和机器学习算法生成海量假想的材

    06

    多目标演化算法 | 从参考点出发,求解高维多目标优化问题!

    从社会生活的角度出发,最优化问题普遍存在于我们的日常生活中。例如,人们往往追求利润的最大化、投资风险的最小化等。随着科学技术和生产生活的日益发展,人们面临的优化问题也日渐复杂。其中,多目标优化问题是一类典型的代表。顾名思义,多目标优化问题即人们需同时优化多个目标,且各目标之间往往存在冲突。例如,生产经营者往往希望用最小的代价获得最大的收益;人们购买汽车时,除了考虑价格外,还会考虑汽车的性能、舒适度等(见图一)。而演化算法(见图二)是模拟生物界自然选择和自然进化的随机启发式算法,现已成为当前解决复杂多目标优化问题的有效工具之一。其中,香港城市大学张青富教授提出的MOEA/D目前已成为求解多目标优化问题最流行的算法框架[1-2]。

    04
    领券