架构优化升级 基于以上问题,我们在进行大量技术调研选型及POC之后,我们主要做了如下2部分大的架构优化升级。...2.2 Apache Hudi 我们需要有一种能够兼容S3存储之后,既支持大量数据的批处理又支持增加数据的流处理的数据湖解决方案。...也提供了基于最新文件的Raw Parquet 读优化查询。从而实现流批一体架构而不是典型的Lambda架构。...hoodie.merge.allow.duplicate.on.inserts 其中:hoodie.combine.before.insert 决定是否对同一批次的数据按 recordKey...总结 我司基于Hudi实现流批一体数据湖架构上线生产环境已有半年多时间,在引入Hudi之后我们在以下各个方面都带来了一定收益: •成本: 引入Hudi数据湖方案之后,实现了S3数据增量查询和增量更新删除
; 简述大数据架构发展 Lambda 架构 Lambda 架构是目前影响最深刻的大数据处理架构,它的核心思想是将不可变的数据以追加的方式并行写到批和流处理系统内,随后将相同的计算逻辑分别在流和批系统中实现...Lambda 架构的四个挑战 Lambda 架构非常复杂,在数据写入、存储、对接计算组件以及展示层都有复杂的子课题需要优化: 写入层上,Lambda 没有对数据写入进行抽象,而是将双写流批系统的一致性问题反推给了写入数据的上层应用...流批融合的 Lambda 架构 针对 Lambda 架构的问题3,计算逻辑需要分别在流批框架中实现和运行的问题,不少计算引擎已经开始往流批统一的方向去发展,例如 Spark 和 Flink,从而简化lambda...图4 Kafka + Flink + ElasticSearch的混合分析系统 Lambda plus:Tablestore + Blink 流批一体处理框架 Lambda plus 是基于 Tablestore...表格存储支持用户 tp 系统低延迟读写更新,同时也提供了索引功能 ad-hoc 查询分析,数据利用率高,容量型表格存储实例也可以保证数据存储成本可控; 计算上,Lambda plus 利用 Blink 流批一体计算引擎
由于Flink集成了批计算和流计算,因此可以使用Flink构建流批一体的系统架构,主要包含数据集成的流批一体架构、数仓架构的流批一体架构和数据湖的流批一体。...基于Flink流批一体整个数据集成的架构将不同。...在Flink流批一体架构的基础上,Flink CDC也是流批混合的,它可以先读取数据库全量数据同步到数仓中,然后自动切换到增量模式。...视频讲解如下:二、数仓架构的流批一体架构 &emsp目前主流数仓架构都是一套典型的离线数仓和一套新的实时数仓,但这两套技术栈是分开的。...数据湖存储与Flink结合,就可以将实时离线一体化的数仓架构演变成实时离线一体化的数据湖架构。数据湖的流批一体架构如下图所示。 视频讲解如下:
以及在批流一体的数据处理需求中,Pulsar的系统架构在性能,扩展性,可用性等方面相对其他传统架构的消息系统的无可比拟的优势。...不仅是消息系统而是流数据平台 我们上面讨论了Pulsar的分层架构如何为不同类型的工作负载提供高性能和可扩展性。但是Pulsar的分层架构带来的好处,远远不止这些。...以下是Pulsar能够胜任消息系统之外的一些方面。 存储无限大小的流 存储和计算分离的系统架构,让Pulsar可以被用作流数据平台。...这样用户和应用程序可以使用Pulsar并行访问流式计算中的最新数据和批量计算中的历史数据。 由于Pulsar基于分片的架构,Pulsar的一个主题在理论上可以达到无限大小。...Presto integration with Apache Pulsar Pulsar还可以与其他数据处理引擎进行类似集成,来作为批流一体的数据存储平台,例如Apache Spark或Apache Flink
•不可控的小文件、空文件问题•数据格式单一,只支持json格式•用户使用成本较高,特征抽取需要不断的Coding•整个架构扩展性较差 为解决上述问题,我们对第一代架构进行了演进和改善,构建了第二代批流一体架构...2.2 第二代架构 2.2.1 批流一体平台的构建 首先将数据链路改造为实时架构,将Spark Structured Streaming(下文统一简称SS)与Flink SQL语法统一,同时实现与Flink...SQL语法大体上一致的批流一体架构,并且做了一些功能上的增强与优化。...新方案收益 通过链路架构升级,基于Flink/Spark + Hudi的新的流批一体架构带来了如下收益 •构建在Hudi上的批流统一架构纯SQL化极大的加速了用户的开发效率•Hudi在COW以及MOR不同场景的优化让用户有了更多的读取方式选择...未来规划 基于Hudi线上运行的稳定性,我们也打算基于Hudi进一步探索流批一体的更多应用场景,包括 •使用Hudi替代Kafka作为CDC实时数仓Pipeline载体•深度结合Hive以及Presto
批处理是流处理的一种非常特殊的情况。在流处理中,我们为数据定义滑 动窗口或滚动窗口,并且在每次窗口滑动或滚动时生成结果。批处理则不同,我们定义一个全局窗口,所有的记录都属于同一个窗口。...这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。...Table API / SQL 正在以流批统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。...相反,MapReduce、Tez 和 Spark 是基于批的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。...值得一提的是,性能测试结果中的原始数值可能会因集群设置、配置和软件版本而异。 因此,Flink 可以用同一个数据处理框架来处理无限数据流和有限数据流,并且不会牺牲性能。
❝每家数字化企业在目前遇到流批一体概念的时候,都会对这个概念抱有一些疑问,到底什么是流批一体?这个概念的来源?这个概念能为用户、开发人员以及企业带来什么样的好处?跟随着博主的理解和脑洞出发吧。...❞ 前言 到底什么是流批一体? 批的来源?流的来源? 为什么要做流批一体? 从 数据开发的现状出发 探索理想中的流批一体能力支持 最终到数仓落地 go!!! ? ? ? ? ? ? ?...n 年前的引擎能力(hive 等) 对文件、批量数据处理支持很友好 数据多是小时、天级别延迟 结论:批是在批式存储、处理引擎能力支持的角度提出的 ? ?...近几年的引擎能力(flink 等) 逐渐对流式数据处理、容错支持更好 数据可以做到秒、分钟级别延迟 结论:流是在流式存储、处理引擎能力支持的角度提出的 ? ? ? ? ? ? ?...站在用户的角度来看 对于相同的指标,有离线的、实时的,而且部分场景下口径不能统一! ? ? 博主理解的流批一体更多的是站在平台能力支持的角度上 所以这里重点说明引擎 + 工具链上的期望 ? ? ?
01 整体思考 提到流批一体,不得不提传统的大数据平台 —— Lambda 架构。...通过一套数据链路来同时满足流和批的数据处理需求是最理想的情况,即流批一体。此外我们认为流批一体还存在一些中间阶段,比如只实现计算的统一或者只实现存储的统一也是有重大意义的。...对于同时实现计算统一和存储统一的场景,我们可以将计算的结果直接写入到流批统一的存储。我们选择了 Iceberg 作为流批统一的存储,因为它拥有良好的架构设计,比如不会绑定到某一个特定的引擎等。...而在流批一体模式下,开发模式变为了首先完成 SQL 的开发,其中包括逻辑的、物理的 DDL 的定义,以及它们之间的字段映射关系的指定,DML 的编写等,然后分别指定流批任务相关的配置,最后发布成流批两个任务...基于这种天然的错峰,我们可以通过在专属的 JDOS Zone 中进行不同类型的流批应用的混部来提升资源的使用率,并且如果统一使用 Flink 引擎来处理流批应用,资源的使用率会更高。
Flink使用HiveCatalog可以通过批或者流的方式来处理Hive中的表。...这就意味着Flink既可以作为Hive的一个批处理引擎,也可以通过流处理的方式来读写Hive中的表,从而为实时数仓的应用和流批一体的落地实践奠定了坚实的基础。...metastore:添加分区的元数据信息,仅Hive表支持该值配置 success-file:在表的存储路径下添加一个_SUCCESS文件 默认值:(none) 解释:提交分区的策略,用于通知下游的应用该分区已经完成了写入...值得注意的是,当以流的方式读取Hive表时,该参数的默认值是1m,即1分钟。当temporal join时,默认的值是60m,即1小时。...在实际应用中,通常有将实时数据流与 Hive 维表 join 来构造宽表的需求,Flink提供了Hive维表JOIN,可以简化用户使用的复杂度。
Flink如何做到流批一体 流批一体的理念 2020年,阿里巴巴实时计算团队提出“流批一体”的理念,期望依托Flink框架解决企业数据分析的3个核心问题,理念中包含三个着力点,分别是一套班子、一套系统、...流批一体的理念即使用同一套 API、同一套开发范式来实现大数据的流计算和批计算,进而保证处理过程与结果的一致性。...; 3.ScheDuler 层架构统一,支持流批场景; 4.Failover Recovery层 架构统一,支持流批场景; 5.Shuffle Service 层架构统一,流批场景选择不同的Shuffle...Flink架构优化 在实际生产环境中,针对不同的应用场景,我们对数据处理的要求是不同的: 有些场景下,只需离线处理数据,对实时性要求不高,但要求系统吞吐率高,典型的应用是搜索引擎构建索引; 有些场景下,...无统计信息场景的优化 开发更高效的算子 使Flink同时兼备流、批、OLAP处理的能力,成为更通用的框架 Flink支持的应用场景 Apache Flink支持的3种典型应用场景: 事件驱动的应用
流批一体在 Shopee 的应用场景 2. 批处理能力的生产优化 3. 与离线生态的完全集成 4....平台在流批一体上的建设和演进 Tips:点击「阅读原文」免费领取 5000CU*小时 Flink 云资源 01 流批一体在 Shopee 的应用场景 首先,先来了解一下 Flink 在 Shopee...第四个应用场景是风控反作弊领域,用做实时反作弊和离线反作弊。 从 Shopee 内部的业务场景来看,数仓是一个流批一体发挥重要作用的领域。...在这类 Lambda 架构中,Flink 流批一体主要带来的优势是实现计算统一。通过计算统一去降低用户的开发及维护成本,解决两套系统中计算逻辑和数据口径不一致的问题。...上面介绍的都是 Shopee 内部流批一体应用场景的一些例子,我们内部还有很多团队也正在尝试 Flink 的流批一体,未来会使用的更广泛。
易用性的提升主要体现在以下几个方面: 更方便的追加或修改表定义 灵活的声明动态的查询参数 加强和统一了原有 TableEnv 上的 SQL 接口 简化了 connector 的属性定义 对 Hive 的...在 ETL 场景中,将多张表的数据合并到一张表,目标表的 schema 定义其实是上游表的合集,需要一种方便合并表定义的方式。...改为 true 只能使用 ALTER TABLE 这样的语句修改表的定义,从 1.11 开始,用户可以通过动态参数的形式灵活地设置表的属性参数,覆盖或者追加原表的 WITH (...)...例如,下面的样例展示了如何定义向量化的 Python 标量函数以及在 python table api 中的应用: @udf(input_types=[DataTypes.BIGINT(), DataTypes.BIGINT...,比如 schema 的易用性增强,Descriptor API 简化以及更丰富的流 DDL 将会是努力的方向,让我们拭目以待 ~
摘要:本文介绍了某零售企业用户基于 Dlink + FlinkSQL 构建批流一体数据平台的实践,主要为部署的分享。...,最近调研了很多的开源项目,最终发现 Dlink 在建立批流一体的数据平台上更满足需求。...数据开发的便捷性对于数据平台来说非常重要,决定了项目的建设与运维成本,而 Dlink 提供了 FlinkSQL 与其他 SQL 的开发与调试能力,使数据开发工作达到Hue 的效果,自动提交及创建远程集群的能力降低了使用门槛...3.local 不熟悉的话慎用,并不要执行流任务。 三、集群中心 集群中心配置包括: 集群实例 集群配置其中集群实例适用场景为standalone和yarn session以及k8s session。...即添加 Flink 集群的 JobManager 的 RestApi 地址。
数据湖可以汇集不同数据源(结构化、非结构化,离线批数据、实时流数据)和不同计算引擎(流计算引擎、批处理引擎,交互式分析引擎、机器学习引擎),是未来大数据的发展趋势,目前Hudi、Iceberg和DeltaLake...笔者基于对开源数据湖组件Hudi的研究和理解,思考在Iceberg、DeltaLake和Hudi等开源数据湖组件之上构建批流一体近实时数仓的可能性和思路。...03 批流一体 按照上述思路建设的近实时数仓同时还实现了批流一体:批量任务和流任务存储统一(通过Hudi/Iceberg/DeltaLake等湖组件存储在HDFS上)、计算统一(Flink/Spark作业...)、开发统一(Flink/Spark)、业务逻辑统一(同一套逻辑分为批和流)。...业务需求使用同一套加工逻辑开发代码,按照加工时效的粒度分为批和流两类加工,在统一的数据来源上在同一套计算环境分别进行批量和流式数据加工,四方面的统一保证批任务和流任务的数据结果一致性。
流计算与批计算对比 数据时效性 流式计算实时、低延迟,流式计算适合以“t+0”的形式呈现业务数据; 批计算非实时、高延迟,批计算适合以“t+1”的形式呈现业务数据; 数据特征 流式计算数据一般是动态数据...应用场景 流式计算应用在实时场景,如:业务监控、实时推荐等。 批计算应用在离线计算场景,如:数据分析、离线报表等。 运行方式 流式计算的任务是阻塞式的,一直持续运行中。...批计算的任务是一次性完成即结束。...etl-engine 实现流式计算 etl-engine 支持通过自身提供的 ”kafka消费节点“进行消息消费,并在消费数据流(消息流)的同时调用自身提供的“融合查询API”,实现将多种数据源的维表数据读取到内存中...支持对多种类别数据库之间读取的数据进行融合查询。 支持消息流数据传输过程中动态产生的数据与多种类型数据库之间的流计算查询。 融合查询语法遵循ANSI SQL标准。
图片 - 随着大数据领域不断发展,企业对于业务场景的诉求也从离线的满足转到高实时性的要求,“t+0”形式呈现业务数据已是刚需。...- 流式处理方式目前已经备受关注,代表性的产品有Flink,用JAVA开发,但产品实施复杂,开发门槛要求高,维护成本较高,属于国外产品,敏感领域使用需要慎重考虑。...市场需求 图片 产品概述 图片 图片 应用场景 图片 图片 可行性 图片 产品价值 图片 图片
长期以来,我们一直被告知批处理和流(有界和无界系统)是正交技术——一种参考架构,其中流媒体为数据湖提供养料,仅此而已。...这种架构没有一个花哨的名字——主要是因为它应该一直是这样运作的。因此,CSA 1.4 使构建这些数据产品变得轻而易举。...解锁新的用例和架构 借助 CSA 1.4 提供的新功能,新的用例以及降低延迟和加快上市时间的新功能成为可能。 分布式实时数据仓库——通过物化视图将流数据作为事实与批量数据作为维度进行连接。...例如,执行丰富的点击流分析,或将传感器数据与历史测量值结合起来。SSB 中的新 DDL 接口提供了从CDP 堆栈中的任何位置定义流和批处理源并使用连续 SQL 连接它们的功能。...而不必解析流数据的流水。
来源:Kafka-Flink Meetup深圳站 作者:陈肃 正文
架构。...Flink的实现 Flink比起其他的流处理框架,更优在两点: 遵循Dataflow模型,在编程模型上统一流批一体 改进Chandy-Lamport算法,以更低的代价保证精准一次的实现 1.1 编程模型统一的背后...剩下的问题:数据来源不统一 上述流批衔接的前提是数据源被分为了流数据源和批数据源。那么口径便是不统一的,这会带来一些对接成本。...另外,Pravega这种以流批一体存储为设计目标的软件可能也是解决方案之一。 3. 小结 在本文中,笔者和大家一起了解了流批一体的来源,以及Flink社区在流批一体中做出的努力。...此外,我们也看到了有些问题并不是Flink这个框架可以解决的,需要整个大数据生态来一起演进,走向流批一体。 在文章的最后,感谢余空同学的交流与指导,我们一起写出了这篇文章。
领取专属 10元无门槛券
手把手带您无忧上云