首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python实现对规整的二维列表中每个子列表对应的值求和

s2 += i[1] s3 += i[2] s4 += i[3] print(list([s1, s2, s3, s4])) 上面的这个代码可以实现,但是觉得太不智能了,如果每个子列表里边有...(lst, axis=0) # 按照纵轴计算 list2 = np.sum(lst, axis=1) # 按照横轴计算 print(list1) print(list2) 这里使用numpy库进行实现...[1, 5, 1, 2, 6], [2, 3, 4, 5], [5, 3, 1, 3]] print(list(reduce(lambda x, y: map(lambda i..., j: i + j, x, y), lst))) 以上就是针对该问题的三个解决方法了,真是太强了!...这篇文章主要分享了使用Python实现对规整的二维列表中每个子列表对应的值求和的问题,文中针对该问题给出了具体的解析和代码演示,一共3个方法,顺利帮助粉丝顺利解决了问题。

4.6K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    解析美女出的一道状态机题(x、y和z值)

    C的缺省子状态是C1,状态机进入C1,执行C1的入口活动z=z*2,z的值变为6。 e1发生,状态机保持在C1,执行动作x=4,x的值变为4。 e3发生,先检查迁移的警戒[z==6]。...e4发生,状态机离开C2,执行C2的出口活动x=-1,x的值变为-1。然后,状态机离开C,执行C的出口活动y=1,y的值变为1。浅历史状态记住离开时所处的同一层的子状态C2。...然后状态机进入E,执行E的入口活动y++,y的值变为2。 e1发生,状态机返回历史状态,即C2。先父后子执行入口活动。先执行C的入口活动z++;y=2。z的值变为4,y的值变为2。...然后执行C2的入口活动y=0,y的值变为0。 e5发生,状态机离开C2,执行C2的出口活动x=-1,x的值变为-1。状态机迁移到C的终止状态,触发了完成迁移。图上有完成迁移由C指向A。...离开C时,执行C的出口活动y=1,y的值变为1。状态机进入A时,执行A的入口活动z=0。因此,最终x=-1,y=1,z=0。

    78510

    两个对象值相同(x.equals(y) == true),但却可有不同的hash code,这句话对不对?

    不对,如果两个对象x和y满足x.equals(y) == true,它们的哈希码(hash code)应当相同。...Java对于eqauls方法和hashCode方法是这样规定的:(1)如果两个对象相同(equals方法返回true),那么它们的hashCode值一定要相同;(2)如果两个对象的hashCode相同,...》、《Java编程思想》以及《重构:改善既有代码质量》是Java程序员必看书籍,如果你还没看过,那就赶紧去亚马逊买一本吧)中是这样介绍equals方法的:首先equals方法必须满足自反性(x.equals...(x)必须返回true)、对称性(x.equals(y)返回true时,y.equals(x)也必须返回true)、传递性(x.equals(y)和y.equals(z)都返回true时,x.equals...(z)也必须返回true)和一致性(当x和y引用的对象信息没有被修改时,多次调用x.equals(y)应该得到同样的返回值),而且对于任何非null值的引用x,x.equals(null)必须返回false

    1K20

    Matplotlib三维绘图,这一篇就够了

    这篇博客将介绍使用 mplot3d 工具包进行三维绘图,支持简单的 3D 图形,包括曲面、线框、散点图和条形图。 1....效果图 1.1 3D线效果图 3D线图效果如下: 可自定义线的颜色及点的样式; 1.2 3D散点效果图 3D散点图(标记了着色以呈现深度外观)效果如下: 1.3 3D随机颜色散点效果图 3D随机颜色散点图效果如下...对 scatter() 的每次调用都将独立执行其深度着色。...# rcount 和 ccount kwargs 都默认为 50,决定了每个方向使用的最大样本数。如果输入数据较大,则会将其下采样(通过切片)到这些点数。...X ** 2 + Y ** 2) Z = np.sin(R) # 绘制曲面图 # 绘制使用冷暖色图着色的 3D 表面。

    1.3K00

    Seaborn 可视化

    ,然后消除重叠的图,使曲线下的面积为1来创建的 计数图(条形图)  计数图和直方图很像,直方图通过对数据分组描述分布,计数图是对离散变量(分类变量)计数。  ...lmplot函数内部会调用regplot,两者的主要区别是regplot创建坐标轴,而lmplot创建图  sns.lmplot(x='total_bill',y='tip',data = tips)...还可以使用jointplot在每个轴上创建包含单个变量的散点图。...使用Seaborn的jointplot绘制蜂巢图,和使用matplotlib的hexbin函数进行绘制 2D核密度图和kdeplot类似,但2D核密度图课展示两个变量 条形图也可以用于展现多个变量,barplot...,当大小差别不大时很难区分 在Seaborn中的lmplot,可以通过scatter_kws参数来控制散点图点的大小 scatter = sns.lmplot(x='total_bill',y='tip

    9610

    手把手教你用plotly绘制excel中常见的16种图表(上)

    最近不是在学习plotly嘛,为了方便理解,我们这里取excel绘图中常见的16种图表为例,分两期演示这些基础图表怎么用plotly进行绘制!...饼图与圆环图 我们在用excel绘制饼图的时候,可以选择既定配色方案,还可以自定义每个色块的颜色。用plotly绘制的时候,这些自定义操作也是支持的。...tips数据预览 我们可以看到,在tips数据集中,day字段是星期,包含很多同星期的数据。在进行饼图绘制的时候,以day字段做分类,可以自动实际聚合求和操作。...散点图 散点图是x和y均为数字列表情况下的坐标点图。...x轴和y轴均是列表的形式: # x轴和y轴均是列表的形式 import plotly.express as px fig = px.scatter(x=[0, 1, 2, 3, 4], y=[0, 1

    3.9K20

    10种聚类算法及python实现

    数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。...# 获取此类的示例的行索引 row_ix = where(y == class_value) # 创建这些样本的散布 pyplot.scatter(X[row_ix, 0], X[row_ix...然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。...使用K均值聚类识别出具有聚类的数据集的散点图 8.Mini-Batch K-均值 Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快...然后创建一个散点图,并由其指定的群集着色。 在这种情况下,找到了合理的集群。

    83130

    总结了50个最有价值的数据可视化图表

    散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表。如果数据中有多个组,则可能需要以不同颜色可视化每个组。...抖动图(Jittering with stripplot) 通常,多个数据点具有完全相同的 X 和 Y 值。结果,多个点绘制会重叠并隐藏。...类型变量的直方图(Histogram for Categorical Variable) 类型变量的直方图显示该变量的频率分布。通过对条形图进行着色,可以将分布与表示颜色的另一个类型变量相关联。...密度图(Density Plot) 密度图是一种常用工具,用于可视化连续变量的分布。通过“响应”变量对它们进行分组,您可以检查 X 和 Y 之间的关系。...在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。 06 变化(Change) 35.

    3.3K10

    50 个数据可视化图表

    散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表。如果数据中有多个组,则可能需要以不同颜色可视化每个组。...抖动图(Jittering with stripplot) 通常,多个数据点具有完全相同的 X 和 Y 值。结果,多个点绘制会重叠并隐藏。...类型变量的直方图(Histogram for Categorical Variable) 类型变量的直方图显示该变量的频率分布。通过对条形图进行着色,可以将分布与表示颜色的另一个类型变量相关联。...密度图(Density Plot) 密度图是一种常用工具,用于可视化连续变量的分布。通过“响应”变量对它们进行分组,您可以检查 X 和 Y 之间的关系。...在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。 06 变化(Change) 35.

    4K20

    50个最有价值的数据可视化图表(推荐收藏)

    散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表。如果数据中有多个组,则可能需要以不同颜色可视化每个组。...抖动图(Jittering with stripplot) 通常,多个数据点具有完全相同的 X 和 Y 值。结果,多个点绘制会重叠并隐藏。...密度图(Density Plot) 密度图是一种常用工具,用于可视化连续变量的分布。通过“响应”变量对它们进行分组,您可以检查 X 和 Y 之间的关系。...分布式包点图(Distributed Dot Plot) 分布式包点图显示按组分割的点的单变量分布。点数越暗,该区域的数据点集中度越高。通过对中位数进行不同着色,组的真实定位立即变得明显。 ?...在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。 ? 06 变化(Change) 35.

    4.6K20

    10大机器学习聚类算法实现(Python)

    数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。...X[row_ix, 0], X[row_ix, 1]) # 绘制散点图 pyplot.show() 运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。...X[row_ix, 0], X[row_ix, 1]) # 绘制散点图 pyplot.show() 运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。...然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。...图:使用K均值聚类识别出具有聚类的数据集的散点图 3.6 Mini-Batch K-均值 Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快

    32820

    10种聚类算法的完整python操作实例

    数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。...=1, random_state=4) # 为每个类的样本创建散点图 for class_value in range(2): # 获取此类的示例的行索引 row_ix = where(y == class_value...然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。...使用K均值聚类识别出具有聚类的数据集的散点图 8.Mini-Batch K-均值 Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快...然后创建一个散点图,并由其指定的群集着色。 在这种情况下,找到了合理的集群。

    1.1K20

    10 种聚类算法的完整 Python 操作示例

    数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。...=1, random_state=4)# 为每个类的样本创建散点图for class_value in range(2):# 获取此类的示例的行索引row_ix = where(y == class_value...然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。...使用K均值聚类识别出具有聚类的数据集的散点图 8.Mini-Batch K-均值 Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快...然后创建一个散点图,并由其指定的群集着色。 在这种情况下,找到了合理的集群。

    88620
    领券