:
当所创建的索引中,未给赋值时,也即缺少元素是,用NAN填充
data = {'a':0,'b':1,'c':2.}
s= pd.Series(data, index=['b','a','c','d...df)
"""
输出:
0
0 1
1 2
2 3
3 4
4 5
"""
data = [['Al', 9],['Bl', 8],['Cl', 10]]
# dtype参数将Age列的类型更改为浮点型...rank2 2 NaN
"""
6) 从序列字典中创建一个DataFrame,并进行列添加,删除
# 从序列字典创建一个DataFrame
d = {'one':pd.Series([1,2,3]...NaN
d NaN 4 21.0 NaN
"""
删除列:
# 删除列
d = {'one':pd.Series([1,2,3], index=['a','b','c']),...2
c NaN 3
d 21.0 4
"""
7)通过字典创建dataFrame,并进行行选择,添加,删除
# 行选择, 添加,删除
d = {'one':pd.Series