首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

模型中的引导表

是指在机器学习和数据挖掘领域中,用于指导模型训练和预测的一种数据结构。引导表通常是一个二维表格,其中包含了输入特征和对应的目标变量。它可以帮助模型理解输入特征与目标变量之间的关系,并用于模型的训练和预测过程。

引导表的分类:

  1. 监督学习引导表:包含输入特征和对应的目标变量,用于监督学习任务,如分类和回归。
  2. 无监督学习引导表:只包含输入特征,没有目标变量,用于无监督学习任务,如聚类和降维。

引导表的优势:

  1. 数据整合:引导表可以将输入特征和目标变量整合在一起,方便数据的管理和处理。
  2. 特征选择:通过观察引导表中的特征与目标变量之间的关系,可以进行特征选择,提高模型的效果和效率。
  3. 模型训练:引导表可以作为模型训练的输入数据,帮助模型学习输入特征与目标变量之间的映射关系。
  4. 模型评估:引导表可以用于评估模型的性能,通过对比模型预测结果与引导表中的目标变量,可以计算模型的准确率、精确率等指标。

引导表的应用场景:

  1. 金融领域:用于信用评估、风险控制等任务。
  2. 医疗领域:用于疾病诊断、药物研发等任务。
  3. 零售领域:用于销售预测、用户推荐等任务。
  4. 物流领域:用于路径规划、货物配送等任务。

腾讯云相关产品和产品介绍链接地址:

  1. 腾讯云机器学习平台(https://cloud.tencent.com/product/tensorflow)
  2. 腾讯云数据挖掘平台(https://cloud.tencent.com/product/dm)
  3. 腾讯云人工智能开发平台(https://cloud.tencent.com/product/ai)
  4. 腾讯云大数据平台(https://cloud.tencent.com/product/emr)

请注意,以上链接仅为示例,实际使用时应根据具体需求选择适合的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

CVPR2023 | 用于统一的图像恢复和增强的生成扩散先验

在拍摄、存储、传输和渲染过程中,图像质量往往会降低。图像恢复和增强的目标是逆转这种退化并改善图像质量。通常,恢复和增强任务可以分为两大类:1)线性反演问题,例如图像超分辨率(SR)、去模糊、修补、彩色化等,在这些任务中,退化模型通常是线性的且已知;2)非线性或盲问题,例如低光增强和HDR图像恢复,其中退化模型是非线性的且未知。对于特定的线性退化模型,可以通过对神经网络进行端到端的监督训练来解决图像恢复问题。然而,在现实世界中,受损图像往往存在多个复杂的退化情况,全面监督的方法很难泛化应用。近年来,通过生成模型寻找更通用的图像先验并在无监督设置下处理图像恢复问题引起了广泛的兴趣。在推理过程中,可以处理不同退化模型的多个恢复任务而无需重新训练。例如,经过大量干净图像数据集训练的生成对抗网络(GAN)通过GAN反演,在各种线性反演问题上取得了成功,学习到了真实世界场景的丰富知识。与此同时,去噪扩散概率模型(DDPMs)在GAN的基础上展现了令人印象深刻的生成能力、细节水平和多样性。作为早期尝试,现有的工作——去噪扩散恢复模型(DDRM)使用预训练的DDPMs进行变分推断,并在多个恢复任务上取得了令人满意的结果,但其在已知线性退化矩阵上利用奇异值分解(SVD),因此仍然局限于线性反演问题。本文进一步提出了一种高效的方法,名为生成扩散先验(GDP)。它利用经过良好训练的DDPM作为通用图像恢复和增强的有效先验,并以退化图像作为引导。作为一个统一的框架,GDP不仅适用于各种线性反演问题,还首次推广到非线性和盲目图像恢复和增强任务。GDP采用了一种盲退化估计策略,在去噪过程中随机初始化并优化GDP的退化模型参数。此外,为了进一步提高光真实性和图像质量,本文系统地研究了一种有效的指导扩散模型的方法。另外,借助提出的分层指导和基于分块的生成策略,GDP能够恢复任意分辨率的图像,其中首先预测低分辨率图像和退化模型,以引导高分辨率图像的生成过程。

01

无回归器引导的药物反应预测方法

今天为大家介绍的是来自武汉大学胡文斌团队的一篇论文。药物反应预测(DRP)是药物发现中的一个关键阶段,其评估的最重要指标是IC50分数。DRP的结果在很大程度上取决于生成分子的质量。现有的分子生成方法通常采用基于分类器的指导,允许在IC50分类范围内进行采样。然而,这些方法无法确保采样空间范围的有效性,导致生成了大量无效分子。通过实验和理论研究,作者假设基于目标IC50分数的条件生成可以获得更有效的采样空间。因此,作者引入了无回归器指导的分子生成方法,以确保在更有效的空间内进行采样,支持DRP。无回归器指导结合了扩散模型的分数估计与基于数值标签的回归控制模型的梯度。为了有效映射药物和细胞系之间的回归标签,作者设计了一个常识数值知识图谱以限制文本表示顺序。对DRP任务的真实世界数据集的实验结果表明,该方法在药物发现中是有效的。代码可在以下网址获得:https://anonymous.4open.science/r/RMCD-DBD1。

01
  • ICCV2023 SOTA 长短距离循环更新网络--LRRU介绍

    本文介绍了一种名为长短距离循环更新(LRRU)网络的轻量级深度网络框架,用于深度补全。深度补全是指从稀疏的距离测量估计密集的深度图的过程。现有的深度学习方法使用参数众多的大型网络进行深度补全,导致计算复杂度高,限制了实际应用的可能性。相比之下,本文提出的LRRU网络首先利用学习到的空间变体核将稀疏输入填充以获得初始深度图,然后通过迭代更新过程灵活地更新深度图。迭代更新过程是内容自适应的,可以从RGB图像和待更新的深度图中学习到核权重。初始深度图提供了粗糙但完整的场景深度信息,有助于减轻直接从稀疏数据回归密集深度的负担。实验证明,LRRU网络在减少计算复杂度的同时实现了最先进的性能,更适用于深度补全任务。

    05

    ICML 2024 | 通过力引导的SE(3)扩散模型生成蛋白质构象

    今天为大家介绍的是来自字节跳动Quanquan Gu团队的一篇论文。蛋白质的构象景观对于理解其在复杂生物过程中的功能至关重要。传统的基于物理的计算方法,如分子动力学(MD)模拟,存在罕见事件采样和长时间平衡问题,限制了它们在一般蛋白质系统中的应用。最近,深度生成建模技术,特别是扩散模型,已被用于生成新颖的蛋白质构象。然而,现有的基于评分的扩散方法无法正确结合重要的物理先验知识来指导生成过程,导致采样的蛋白质构象与平衡分布存在较大偏差。为了解决这些问题,本文提出了一种用于蛋白质构象生成的力引导SE(3)扩散模型——CONFDIFF。通过将力引导网络与基于数据的评分模型混合,CONFDIFF可以生成具有丰富多样性且保持高保真的蛋白质构象。在包括12种快速折叠蛋白质和牛胰岛素抑制剂(BPTI)在内的多种蛋白质构象预测任务上的实验表明,作者的方法优于当前最先进的方法。

    01

    强化学习在黄页商家智能聊天助手中的探索实践

    本地服务(黄页)微聊代运营模式是指人工客服代替58平台上的商家与C端用户IM沟通聊天以获取商机(如用户联系方式、细粒度需求信息等),再将商机转交给商家,促进商家成单。我们基于58AI Lab自研的灵犀智能语音语义平台构建了智能客服商家版,将其应用在微聊代运营场景下,通过人机协作模式提高商机获取效率,打造了黄页商家智能聊天助手。这里的人机协作模式先后经历了三个阶段:在早期机器人效果较一般时,机器人和人工客服分时工作,即人工客服不上班时才由机器人接待用户咨询。在经过优化机器人效果较优时,先机器人再人工,即当用户来咨询商家时,白天先由机器人接待,若机器人能够聊出商机则结束会话,若不能再转接人工客服,晚上使用纯机器人接待。在机器人效果和人工很接近甚至超过人工时,使用纯机器人接待,人工客服去从事其他更复杂的工作。2021年年初,黄页商家智能聊天助手被商业化,以“微聊管家”命名随会员套餐一起打包售卖给商家,全年共计服务了数万个商家,为公司创造收入超过五千万元。当前,机器人的商机转化率(聊出商机的会话数/总会话数)已达到了人工客服的98%水平,我们实现了纯机器人接待,节省了数十名客服人力。

    02

    基于化学元素知识图的分子对比学习

    本文介绍一篇来自浙江大学计算机科学系、杭州创新中心、杭州西湖生命科学与生物医学实验室等联合发表的文章。该文章构建了一个化学元素知识图(KG)来总结元素之间的微观联系,并提出了一个用于分子表征学习的知识增强对比学习(KCL)框架。KCL由三个模块组成。第一个模块是知识引导图增强,对原有的基于化学元素KG的分子图进行扩充。第二个模块是知识感知图表示,对原始分子图使用通用图编码器来提取分子的表示,并使用知识感知消息传递神经网络(Knowledge-aware Message Passing Neural Network, KMPNN)对增强分子图中的复杂信息进行编码。最后一个模块是一个对比目标,以最大化分子图的这两种视图之间的一致性。

    05

    CVPR2023 | 通过示例绘制:基于示例的图像编辑与扩散模型

    由于社交媒体平台的进步,照片的创意编辑成为了普遍需求。基于人工智能的技术极大地降低了炫酷图像编辑的门槛,不再需要专业软件和耗时的手动操作。深度神经网络通过学习丰富的配对数据,可以产生令人印象深刻的结果,如图像修复、构图、上色和美化。然而,语义图像编辑仍然具有挑战性,它旨在操纵图像内容的高级语义并保持图像的真实性。目前,大规模语言图像模型能够以文本提示为指导实现图像操作,但是详细的文本描述常常不够准确,很难描述细粒度的物体外观。因此,需要开发一种更直观的方法来方便新手和非母语使用者进行精细的图像编辑。

    03

    ICCV 2023 | Pix2Video: 基于扩散模型的视频编辑

    在大量图像集合上训练的图像扩散模型,在质量和多样性方面已经成为最通用的图像生成器模型。它们支持反演真实图像和条件(例如,文本)生成,使其在高质量图像编辑应用中非常受欢迎。本文研究如何使用这些预训练的图像模型进行文本引导的视频编辑。关键的挑战是在实现目标编辑的同时仍然保留源视频的内容。本文的方法通过两个简单的步骤来工作:首先,使用预训练的结构引导的(例如,深度)图像扩散模型在锚框上进行文本引导的编辑;然后,在关键步骤中,通过自注意力特征注入将变化逐步传播到未来帧,以适应扩散模型的核心去噪步骤。然后,通过调整框架的潜在编码来巩固这些变化,然后再继续这个过程。

    03

    DiffBIR:用生成式扩散先验实现盲图像恢复

    图像恢复的目的是从低质量的观测中重建出高质量的图像。典型的图像恢复问题,如图像去噪、去模糊和超分辨率,通常是在受限的环境下定义的,其中退化过程是简单和已知的(例如,高斯噪声和双三次降采样)。为了处理现实世界中退化的图像,盲图像恢复(BIR)成为一个很有前途的方向。BIR的最终目标是在具有一般退化的一般图像上实现真实的图像重建。BIR不仅扩展了经典图像恢复任务的边界,而且具有广泛的实际应用领域。BIR的研究还处于初级阶段。根据问题设置的不同,现有的BIR方法大致可以分为三个研究方向,即盲图像超分辨率(BSR)、零次图像恢复(ZIR)和盲人脸恢复(BFR)。它们都取得了显著的进步,但也有明显的局限性。BSR最初是为了解决现实世界的超分辨率问题而提出的,其中低分辨率图像包含未知的退化。根据最近的BSR调查,最流行的解决方案可能是BSRGAN和Real-ESRGAN。它们将BSR表述为一个有监督的大规模退化过拟合问题。为了模拟真实的退化,分别提出了退化洗牌策略和高阶退化建模,并用对抗性损失来以端到端方式学习重建过程。它们确实消除了一般图像上的大多数退化,但不能生成真实的细节。此外,它们的退化设置仅限于×4或者×8超分辨率,这对于BIR问题来说是不完整的。第二组ZIR是一个新出现的方向。代表有DDRM、DDNM、GDP。它们将强大的扩散模型作为附加先验,因此比基于GAN的方法具有更大的生成能力。通过适当的退化假设,它们可以在经典图像恢复任务中实现令人印象深刻的零次恢复。但是,ZIR的问题设置与BIR不一致。他们的方法只能处理明确定义的退化(线性或非线性),但不能很好地推广到未知的退化。第三类是BFR,主要研究人脸修复。最先进的方法可以参考CodeFormer和VQFR。它们具有与BSR方法相似的求解方法,但在退化模型和生成网络上有所不同。由于图像空间较小,这些方法可以利用VQGAN和Transformer在真实世界的人脸图像上取得令人惊讶的好结果。然而,BFR只是BIR的一个子域。它通常假设输入大小固定,图像空间有限,不能应用于一般图像。由以上分析可知,现有的BIR方法无法在一般图像上实现一般退化的同时实现真实图像的重建。因此需要一种新的BIR方法来克服这些限制。本文提出了DiffBIR,将以往工作的优点整合到一个统一的框架中。具体来说,DiffBIR(1)采用了一种扩展的退化模型,可以推广到现实世界的退化;(2)利用训练良好的Stable Diffusion作为先验来提高生成能力;(3)引入了一个两阶段的求解方法来保证真实性和保真度。本文也做了专门的设计来实现这些策略。首先,为了提高泛化能力,本文将BSR的多种退化类型和BFR的广泛退化范围结合起来,建立了一个更实用的退化模型。这有助于DiffBIR处理各种极端退化情况。其次,为了利用Stable Diffusion,本文引入了一个注入调制子网络-LAControlnet,可以针对特定任务进行优化。与ZIR类似,预训练的Stable Diffusion在微调期间是固定的,以保持其生成能力。第三,为了实现忠实和逼真的图像重建,本文首先应用恢复模块(即SwinIR)来减少大多数退化,然后微调生成模块(即LAControlnet)来生成新的纹理。如果没有这个部分,模型可能会产生过度平滑的结果(删除生成模块)或生成错误的细节(删除恢复模块)。此外,为了满足用户多样化的需求,本文进一步提出了一个可控模块,可以实现第一阶段的恢复结果和第二阶段的生成结果之间的连续过渡效果。这是通过在去噪过程中引入潜在图像引导而无需重新训练来实现的。适用于潜在图像距离的梯度尺度可以调整以权衡真实感和保真度。在使用了上述方法后,DiffBIR在合成和现实数据集上的BSR和BFR任务中都表现出优异的性能。值得注意的是,DiffBIR在一般图像恢复方面实现了很大的性能飞跃,优于现有的BSR和BFR方法(如BSRGAN、Real-ESRGAN、CodeFormer等)。可以观察到这些方法在某些方面的差异。对于复杂的纹理,BSR方法往往会产生不真实的细节,而DiffBIR方法可以产生视觉上令人愉悦的结果。对于语义区域,BSR方法倾向于实现过度平滑的效果,而DiffBIR可以重建语义细节。对于微小的条纹,BSR方法倾向于删除这些细节,而DiffBIR方法仍然可以增强它们的结构。此外,DiffBIR能够处理极端的退化并重新生成逼真而生动的语义内容。这些都表明DiffBIR成功地打破了现有BSR方法的瓶颈。对于盲人脸恢复,DiffBIR在处理一些困难的情况下表现出优势,例如在被其他物体遮挡的面部区域保持良好的保真度,在面部区域之外成功恢复。综上所述,DiffBIR首次能够在统一的框架内获得具有竞争力的BSR和BFR任务性能。广泛而深入的实验证明了DiffBIR优于现有的最先进的BSR和BFR方法。

    01

    视频生成无需GAN、VAE,谷歌用扩散模型联合训练视频、图像,实现新SOTA

    机器之心报道 编辑:杜伟、陈萍 扩散模型正在不断的「攻城略地」。 扩散模型并不是一个崭新的概念,早在2015年就已经被提出。其核心应用领域包括音频建模、语音合成、时间序列预测、降噪等。 那么它在视频领域表现如何?先前关于视频生成的工作通常采用诸如GAN、VAE、基于流的模型。 在视频生成领域,研究的一个重要里程碑是生成时间相干的高保真视频。来自谷歌的研究者通过提出一个视频生成扩散模型来实现这一里程碑,显示出非常有希望的初步结果。本文所提出的模型是标准图像扩散架构的自然扩展,它可以从图像和视频数据中进行联合训

    02

    为应对输出风险文本的情况,提出一种针对LLMs简单有效的思维链解毒方法

    近年来,随着大语言模型(Large Language Model, LLM)在自然语言处理任务上展现出优秀表现,大模型的安全问题应该得到重视。近期的工作表明[1][2][3]。LLM在生成过成中有概率输出包含毒性的文本,包括冒犯的,充满仇恨的,以及有偏见的内容,这对用户的使用是有风险的。毒性是LLM的一种固有属性,因为在训练过程中,LLM不可避免会学习到一些有毒的内容。诚然,对大模型的解毒(detoxification)是困难的,因为不仅需要语言模型保留原始的生成能力,还需要模型避免生成一些“特定的”内容。同时,传统的解毒方法通常对模型生成的内容进行编辑[4][5],或对模型增加一定的偏置[6][7],这些方法往往把解毒任务当成一种特定的下游任务看待,损害了大语言模型最本质的能力——生成能力,导致解毒过后模型生成的结果不尽人意。

    04

    视频生成无需GAN、VAE,谷歌用扩散模型联合训练视频、图像,实现新SOTA

    来源:机器之心本文约2100字,建议阅读9分钟扩散模型正在不断地「攻城略地」。 扩散模型并不是一个崭新的概念,早在2015年就已经被提出。其核心应用领域包括音频建模、语音合成、时间序列预测、降噪等。 那么它在视频领域表现如何?先前关于视频生成的工作通常采用诸如GAN、VAE、基于流的模型。 在视频生成领域,研究的一个重要里程碑是生成时间相干的高保真视频。来自谷歌的研究者通过提出一个视频生成扩散模型来实现这一里程碑,显示出非常有希望的初步结果。本文所提出的模型是标准图像扩散架构的自然扩展,它可以从图像和视频数

    01

    ICCV 2023 | LivelySpeaker: 面向语义感知的共话手势生成

    人类对话中通常存在非语言行为,其中最重要的是手势语言。这些非语言手势提供了关键信息、丰富了对话的上下文线索。最近,基于深度学习的方法在从多模态输入生成手势的领域中广泛应用。特别是,这些方法将问题建模为有条件的运动生成,并通过训练一个以说话者身份音频波形、语音文本或这些多模态信号的组合为输入的有条件生成模型来解决。虽然结合了多个模态,但结果往往受到音频信号的节奏高度相关的影响,因为它与说话期间手势的表现密切相关。而其他工作认识到通过共话手势传达的语义的重要性,但它们的框架在很大程度上依赖于预定义的手势类型或关键字,这使得难以有效表达更复杂的意图。

    01

    Self-Ensembling with GAN-based Data Augmentation for Domain Adaptation in Semantic Segmentation

    基于深度学习的语义分割方法有一个内在的局限性,即训练模型需要大量具有像素级标注的数据。为了解决这一具有挑战性的问题,许多研究人员将注意力集中在无监督的领域自适应语义分割上。无监督域自适应试图使在源域上训练的模型适应目标域。在本文中,我们介绍了一种自组装技术,这是分类中领域自适应的成功方法之一。然而,将自组装应用于语义分割是非常困难的,因为自组装中使用的经过大量调整的手动数据增强对于减少语义分割中的大的领域差距没有用处。为了克服这一限制,我们提出了一个由两个相互补充的组件组成的新框架。首先,我们提出了一种基于生成对抗性网络(GANs)的数据扩充方法,该方法在计算上高效,有助于领域对齐。给定这些增强图像,我们应用自组装来提高分割网络在目标域上的性能。所提出的方法在无监督领域自适应基准上优于最先进的语义分割方法。

    02
    领券