首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

检查DV的可解释和不可解释的差异

DV(Data Visualization)是数据可视化的缩写,是指通过图表、图形、地图等可视化方式将数据呈现出来,以便更好地理解和分析数据。DV的可解释和不可解释的差异主要体现在以下几个方面:

  1. 可解释性(Interpretability):可解释性是指数据可视化能够清晰、准确地传达数据的含义和信息。一个好的数据可视化应该能够帮助用户快速理解数据的趋势、关联性和规律,从而支持决策和行动。
  2. 不可解释性(Incomprehensibility):不可解释性是指数据可视化在某些情况下可能无法传达数据的含义和信息。这可能是因为数据过于复杂、图表设计不当、数据缺失或错误等原因导致的。不可解释性的数据可视化可能会误导用户,使其对数据的理解产生偏差。

在实际应用中,DV的可解释和不可解释的差异对于数据分析和决策具有重要影响。一个具有良好可解释性的数据可视化可以帮助用户发现数据中的模式和趋势,提供洞察力,并支持决策制定。而不可解释性的数据可视化可能会导致误解和错误决策。

在云计算领域,腾讯云提供了一系列与数据可视化相关的产品和服务,以帮助用户实现数据的可视化分析和展示。其中包括:

  1. 数据可视化工具:腾讯云提供了一些数据可视化工具,如腾讯云数据可视化工具(https://cloud.tencent.com/product/dv)和腾讯云图表工具(https://cloud.tencent.com/product/chart)等。这些工具提供了丰富的图表和图形类型,用户可以通过简单的拖拽和配置来创建自定义的数据可视化。
  2. 数据分析平台:腾讯云提供了一些数据分析平台,如腾讯云数据湖分析(https://cloud.tencent.com/product/dla)和腾讯云数据仓库(https://cloud.tencent.com/product/dws)等。这些平台集成了数据可视化功能,用户可以在平台上进行数据的清洗、转换和分析,并通过可视化方式展示分析结果。
  3. 人工智能服务:腾讯云的人工智能服务(https://cloud.tencent.com/product/ai)也可以与数据可视化结合使用,例如通过图像识别和自然语言处理等技术,将非结构化的数据转化为可视化的形式,提供更直观的数据展示和分析。

总之,数据可视化在云计算领域具有重要意义,腾讯云提供了一系列与数据可视化相关的产品和服务,以帮助用户实现数据的可视化分析和展示。通过合理利用这些工具和平台,用户可以更好地理解和分析数据,支持决策和行动。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • ICML 2024 | 情境化的策略恢复:用自适应模仿学习来建模和解释医疗决策

    今天为大家介绍的是来自卡内基·梅隆大学的Eric P. Xing团队的一篇论文。可解释策略学习旨在从观察到的行为中估计可理解的决策策略;然而,现有模型在准确性和可解释性之间存在权衡,这限制了基于数据的人类决策过程的解释。从根本上说,现有方法之所以受到这一权衡的困扰,是因为它们将底层决策过程表示为一个通用策略,而实际上人类决策是动态的,可以在不同情境下发生显著变化。因此,作者开发了情境化策略恢复(CPR),将复杂决策过程的建模问题重新定义为一个多任务学习问题,每个情境代表一个独特的任务,可以通过多个简单的情境特定策略逐步构建复杂的决策策略。CPR将每个情境特定策略建模为一个线性映射,并随着新的观测数据的加入生成新的策略模型。作者提供了两种CPR框架的实现方式:一种侧重于精确的局部可解释性,另一种保留了完整的全局可解释性。作者通过模拟数据和实际数据进行了评估,在预测重症监护病房中的抗生素处方和预测阿尔茨海默症患者的MRI处方方面,达到了最先进的性能。通过这一改进,CPR弥合了可解释方法和黑箱方法之间的准确性差距,允许对情境特定决策模型进行高分辨率的探索和分析。

    01

    从黑盒到玻璃盒:fMRI中深度可解释的动态有向连接

    大脑网络的交互作用通常通过功能(网络)连接来评估,并被捕获为皮尔逊相关系数的无向矩阵。功能连接可以表示静态和动态关系,但这些关系通常使用固定的数据窗口选择来建模。或者,深度学习模型可以根据模型体系结构和训练任务灵活地从相同的数据中学习各种表示。然而,由深度学习模型产生的表示通常很难解释,并且需要额外的事后方法,例如,显著性映射。在这项工作中,我们整合了深度学习和功能连接方法的优势,同时也减轻了它们的弱点。考虑到可解释性,我们提出了一个深度学习架构,它反映了一个有向图层,它代表了模型所了解到的关于相关大脑连接的知识。这种结构可解释性的一个令人惊讶的好处是,显著提高了鉴别对照组、精神分裂症、自闭症和痴呆患者的准确性,以及从功能MRI数据中对年龄和性别的预测。我们还解决了动态有向估计的窗口大小选择问题,因为我们从数据中估计窗口函数,捕获了在每个时间点估计图所需的东西。我们展示了我们的方法与多个现有模型相比,它们的有效性,而不是我们以可解释性为重点的架构。使用相同的数据,但在他们自己的分类任务上训练不同的模型,我们能够估计每个被试的特定任务的有向连接矩阵。结果表明,与标准的动态功能连接模型相比,该方法对混淆因素具有更强的鲁棒性。我们的模型捕获的动态模式是自然可解释的,因为它们突出了信号中对预测最重要的信号间隔。该方法表明,感觉运动网络和默认模式网络之间的连接差异是痴呆症和性别的一个重要指标。网络之间的连接障碍,特别是感觉运动和视觉之间的连接障碍,与精神分裂症患者有关,然而,与健康对照组相比,精神分裂症患者表现出更高的默认模式网络内的功能连接。感觉运动网络的连接对痴呆和精神分裂症的预测都很重要,但精神分裂症更多地与网络之间的连接障碍相关,而痴呆生物标记物主要是网络内的连接。

    03

    Nat. Commun. | 从单细胞转录组数据中学习可解释的细胞和基因签名嵌入

    本文介绍由加拿大麦吉尔大学与蒙特利尔高等商学院、北京大学、复旦大学的研究人员联合发表在Nature Communications的研究成果:本文作者提出了单细胞嵌入式主题模型scETM(single-cell Embedded Topic Model)用于解决大规模scRNA-seq数据集的整合分析。scETM利用可迁移的基于神经网络的编码器,和一个通过矩阵三角分解而具有可解释的线性解码器。scETM同时学习一个编码器网络从而推测细胞类型混合物和一组高度可解释的基因embeddings,主题embeddings和来自多个scRNA-seq数据的批次效应线性截距(linear intercepts)。scETM可扩展到超过106个细胞,并且在跨组织和跨物种零次迁移学习上有着卓越的表现。通过基因集富集分析,作者发现scETM学习的主题富集到具有生物学意义且疾病相关的通路。scETM能将已知基因结合到基因embeddings中,从而通过主题embeddings学习通路和主题的相关性。

    01

    Patterns | 可解释图神经网络在药物性质预测问题上的定量评估研究

    图神经网络因其对图结构数据的强大表达能力而受到越来越多的关注,但它们仍然因为缺乏可解释性而受到质疑。当前可解释性人工智能方法受限于数据集,仅在社交网络等现实世界数据集上进行定性评估,缺少定量评估和比较。同时,可解释性方法生成的解释是否达到预期目的并提供可靠的答案也仍待探索。中山大学杨跃东教授团队联合星药科技研发团队在Cell Press旗下Patterns期刊发表了题为“Quantitative evaluation of explainable graph neural networks for molecular property prediction”的文章,该研究建立了五个分子可解释性基准数据集,定量评估了六种常用的可解释性方法与四种图神经网络模型的组合,并与药物化学家在可解释性任务上进行了直接比较。这是首次将可解释性方法与人类专家在可解释性任务上进行定量实验比较的研究。同时,基于模型学到的解释,研究人员开发了一种数据驱动的分子结构指纹,可作为分子属性预测中经典分子指纹的补充。相关成果[1]已于11月正式发表。

    06

    机器学习与神经影像:评估它在精神病学中的应用

    精神疾病是复杂的,涉及不同的症状学和神经生物学,很少涉及单一的、孤立的大脑结构的破坏。为了更好地描述和理解精神疾病的复杂性,研究人员越来越多地将多元模式分类方法应用于神经成像数据,特别是监督机器学习方法。然而,监督机器学习方法也有独特的挑战和权衡,需要额外的研究设计和解释考虑。本综述的目的是提供一套评估机器学习应用于精神障碍的最佳实践。我们将讨论如何评估两种共同的努力:1)作出可能有助于诊断、预后和治疗的预测;2)询问精神病理学背后复杂的神经生理机制。我们在这里重点讨论机器学习应用于功能连接与磁共振成像,作为一个基础讨论的例子。我们认为,为了使机器学习分类对个体水平的预测具有转化效用,研究人员必须确保分类具有临床信息性,独立于混杂变量,并对性能和泛化性进行适当评估。我们认为,要想揭示精神疾病的复杂机制,需要考虑机器学习方法识别的神经成像特征(如区域、网络、连接)的独特效用、可解释性和可靠性。最后,我们讨论了大型、多站点、公开可用的数据集的兴起如何有助于机器学习方法在精神病学中的应用。

    00
    领券