首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

怎么把12个不同的df数据全部放到同一个表同一个sheet中且数据间隔2行空格?(下篇)

有12个不同的df数据怎么把12个df数据全部放到同一个表同一个sheet中 每个df数据之间隔2行空格。 而且这12个df的表格不一样 完全不一样的12个数据 为了方便看 才放在一起的。...部分的df数据可能涉及二三十行 然后我把数字调高还是会出现数据叠在一起的情况? 二、实现过程 这里【隔壁山楂】给了一个指导:前面写好的没有删,你用的是追加写入之前已经写好的表格,你说下你的想法。...后来还给了一个指导:那你要先获取已存在表的可见行数,这个作为当前需要写入表格的起始行。 后面这个问题就简单一些了,可以直接复制到.py文件。...当然了,还有一个更好的方法,如下图所示: 顺利地解决了粉丝的问题。希望大家后面再遇到类似的问题,可以从这篇文章中得到启发。 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas实战的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

14110

使用pandas-profiling对时间序列进行EDA

由于时间序列数据的性质,在探索数据集时分析的复杂性随着在同一数据集中添加实体个数的增加而增加。在这篇文章中,我将利用 pandas-profiling 的时间序列特性,介绍EDA中的一些关键步骤。...所有传感器是否在同一时间跨度内收集相同数量的数据?收集到的措施在时间和地点上是如何分布的?...例如具有趋势和季节性的时间序列(稍后会详细介绍)不是平稳的——这些现象会影响不同时间的时间序列的值。 平稳过程相对更容易分析,因为时间和变量之间存在静态关系。...对于这个平均线图,我们可以看到轨迹呈下降趋势,具有连续的季节性变化,最大值记录出现在系列的初始阶段。...作为数据科学家,重要的是使用分析工具快速获取数据的整体视图(在我们的案例中是时间序列),并进一步检查数据预处理和建模阶段并做出明智的决策。

1.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas数据应用:天气数据分析

    1.2 天气数据的特点天气数据通常包含多个变量,如温度、湿度、风速等。这些数据通常是时间序列数据,意味着每个观测值都有一个对应的时间戳。...常见问题及解决方案2.1 缺失值处理在实际的天气数据中,经常会遇到缺失值(NaN)。缺失值可能会导致后续的分析结果不准确。因此,处理缺失值是数据分析中的一个重要步骤。...2.1.1 检查缺失值我们可以通过 isnull() 和 sum() 方法来检查每一列的缺失值数量:# 检查缺失值missing_values = df.isnull().sum()print(missing_values...)2.1.2 填充或删除缺失值根据具体情况,我们可以选择填充缺失值或删除含有缺失值的行。...例如,可以使用均值填充缺失值:# 使用均值填充缺失值df['temperature'] = df['temperature'].fillna(df['temperature'].mean())# 或者删除含有缺失值的行

    21110

    5个例子学会Pandas中的字符串过滤

    在本文中,我介绍将学习 5 种可用于过滤文本数据(即字符串)的不同方法: 是否包含一系列字符 求字符串的长度 判断以特定的字符序列开始或结束 判断字符为数字或字母数字 查找特定字符序列的出现次数 首先我们导入库和数据...我们将使用不同的方法来处理 DataFrame 中的行。第一个过滤操作是检查字符串是否包含特定的单词或字符序列,使用 contains 方法查找描述字段包含“used car”的行。...df[df["lot"].str.startswith("A")] 这个方法也能够检查前 n 个字符。...例如,我们可以选择以“A-0”开头的行: df[df["lot"].str.startswith("A-0")] Python 的内置的字符串函数都可以应用到Pandas DataFrames 中。...].str.count("used") < 1] 非常简单吧 本文介绍了基于字符串值的 5 种不同的 Pandas DataFrames 方式。

    2K20

    数据分析 ——— pandas基础(三)

    返回布尔值 18 isupper() 检查Series / Index中每个字符串中的所有字符是否大写。返回布尔值。...19 isnumeric() 检查Series / Index中每个字符串中的所有字符是否为数字。返回布尔值。...Series / Index中每个字符串中的所有字符是否小写,返回布尔值 # 检查Series / Index中每个字符串中的所有字符是否小写,返回布尔值 s = pd.Series(['tom', '...Series / Index中每个字符串中的所有字符是否大写,返回布尔值 # 检查Series / Index中每个字符串中的所有字符是否大写,返回布尔值 s = pd.Series(['Tom', '...Series / Index中每个字符串中的所有字符是否为数字,返回布尔值 # 检查Series / Index中每个字符串中的所有字符是否为数字,返回布尔值 s = pd.Series(['1', '

    1.3K20

    【数据处理包Pandas】DataFrame对象的合并

    它们的主要区别: concat支持多个 DataFrame 对象的水平和垂直排放,即可以列合并也可以行合并;但与merge不同,它的合并不基于列值匹配。...verify_integrity:如果为 True,则检查结果对象是否包含重复索引。 sort:如果为 True,则按索引进行排序。 copy:如果为 False,则不复制数据。...verify_integrity:如果为 True,则在附加操作之前检查结果 DataFrame 中的新索引是否唯一。如果新索引不唯一,则会引发 ValueError。默认为 False。...可选值包括: ‘left’:保留左侧 DataFrame 中的所有行,并将右侧 DataFrame 中与左侧匹配的行合并到结果中。...merge默认的连接方式是'inner'(即内连接),基于列值匹配时取交集,或者明确指明连接方式为how='inner',两个数据集能匹配上的记录才会出现在结果中。

    9500

    pandas实战:出租车GPS数据分析

    status不同时,但经纬度和车速相同时,删除时间序列下status异常数据,因为乘客坐车需要时间,载客状态不可能在极短的时间内突然变化。...需求4:对重复数据进行分组的重复数量统计,检查是否有3个以上(包含)重复的 以上重复数据的数量都是2个,那有没有大于2个重复的呢? 数据量太多,肉眼无法观察,我们通过以下语句判断。...最后我们再通过loc筛选从原始数据df中筛选掉这些需要去除的行索引,最终达到去重的目的。...['time_up'] = df['time'].shift(1) # 向下移动 1 df['time_down'] = df['time'].shift(-1) # 向上移动 1 以这样就可以对每一行进行前后值是否相等的判断了...还是利用shift将我们想要的变量向上偏移一个单位即可。偏移后每一行都是上车、下车或下车、上车的信息,我们最后再通过loc筛选从上车到下车的所有行,同样指定是同一车辆。

    98010

    概率分析方法与推断统计(来自我写的python书)

    在第一个子图里,通过violinplot方法,根据第一个参数df[‘Close’],绘制了基于股票收盘价的小提琴图,其中showmeans参数表示是否要绘制数据平均线,而showmedians参数则表示是否要绘制数据的中位线...那么怎么检验序列是否满足正态分布呢?在scipy.stats模块里封装了normaltest方法,可以用它来检验,在如下的CheckNormal.py范例中,演示了通过该方法的用法。...在第5行到第8里,指定了期望和方法,生成了1000个随机数,在第10行里,通过normaltest方法验证该序列是否符合正态分布。...在第6行里,输出了股票收盘价的均值,约为15.5,在第7行到第11行里,提出了不同的关于收盘价均值的假设,并通过stats模块里的ttest_lsamp方法,对不同的假设进行了t检验。...上述输出结果的第1行表示序列的均值,从第2行到第6行的pvalue结果里,能看到对不同假设的验证结果,详细说明请参考下表里的内容。

    79610

    关联规则算法Apriori algorithm详解以及为什么它不适用于所有的推荐系统

    我们这里假设学校建立了一个在线学习的网站,通过学生将课程添加到课程列表(虚拟购物车)来评估不同的课程。我们最后生成了一个文件,每一行都包含一个学生考虑同时参加的课程的列表。...在本文中中,它是学生在同一学期考虑参加的课程列表,因为我们上面说了课程的选择可以理解为“购物车”。项集的另一个示例是一般商铺中购物车同时购买的产品,例如“面包、鸡蛋、尿布”。...那么我们的支持度就是: Support= 30/1000 = 0.03 支持度越高,项目就越有可能出现在给定的项目集中。 2、置信度 Confidence 置信度是两个产品在同一个项集中的可能性。...在删除“查看”和“添加到购物车”记录后,我们假设数据集中的每一行都与购买该商品的一个数量有关。这些个人购买按用户会话 ID 分组,从而产生不同的交易。...返回了大量提升值和显着置信度值的规则。对于具有各种项集的许多不同规则,支持度为 0.000205(仅供参考,所有规则中的最高支持值)。可以看到这些项集只是相同购买的不同组合但是代表相同的交易。

    1.4K20

    Python中查询缺失值的4种方法

    any():⼀个序列中有⼀个True,则返回True,否则返回False。 sum():对序列进行求和计算。...另外,notnull()方法是与isnull()相对应的,使用它可以直接查询非缺失值的数据行。...在交互式环境中输入如下命令: df[df["B列"] == ""] 输出: 此外,也可以利用空值与正常值的区别来区分两者,比如isnumeric()方法检测字符串是否只由数字组成。...= 0)] 输出: 如上所示,我自定义了匿名函数lambda,作用是在文本列的每一行中查找以下文本值:“NA”、“*”、“?” 、“!” 、“#”、“-”,并检查它找到的列表的长度。...= 0)] 输出: 我们可以对不同列都进行同样的缺失值查询,另外也可以根据自己的实际情况,替换正则表达式中代表缺失值的字符。 ---- 人生苦短,快学Python!

    4.3K10

    一个时间序列可视化神器:Plotnine

    我们将利用6种不同的图表来揭示时间序列数据的各个方面。重点介绍Python中的plotnine库,这是一种基于图形语法(Grammar of Graphics)的绘图工具。...,表明数据可能存在趋势成分;如果自相关系数呈现出明显的波动模式,峰值出现在特定的滞后阶数上,则说明数据中可能存在明显的周期性。...季节子序列图的绘制方法是:根据数据的季节周期,将整个序列分组,每组包含一个完整的季节周期。然后将每个周期的数据值绘制在同一张图上,从而可视化观察序列在不同季节的表现模式。...分解时间序列图: 将原始序列分解为趋势、周期、残差等不同成分,有助于进一步分析。 滞后散点图: 将当前值与前若干滞后值绘制在散点图上,检验序列的自相关性。...自相关系数图: 绘制不同滞后阶数下的自相关系数,判断序列中趋势和周期性的存在。 季节子序列图: 根据季节周期对序列分组,展现不同季节下的数据模式。

    71821

    Python数据科学(六)- 资料清理(Ⅰ)1.Pandas1.资料筛选2.侦测遗失值3.补齐遗失值

    . columns = ['name', 'gender', 'age'] df 检查序列是否有缺失值 # 检查非缺失值数据 df['gender'].notnull() # 检查缺失值资料 df[...'gender'].isnull() 检查字段是否含有缺失值 # 检查字段是否含有缺失值 df['age'].isnull().values.any() # 检查DataFrame 是否还有缺失值 返回...True/False df.isnull().values.any() 计算缺失值的数量 # 检查某个字段缺失值的数量 df['age'].isnull().sum() # 检查字段缺失值的数量 df.isnull...使用平均数、中位数、众数等叙述性统计补齐缺失值 使用内插法补齐缺失值 如果字段数据成线性规律 1.舍弃缺失值 舍弃含有任意缺失值的行 df.dropna() 舍弃所有字段都含有缺失值的行 df.dropna...df.dropna(axis=1, how = 'all') 使用0值表示沿着每一列或行标签\索引值向下执行方法 使用1值表示沿着每一行或者列标签模向执行对应的方法 下图代表在DataFrame当中

    2.2K30

    pandas分组聚合转换

    变换函数的返回值为同长度的序列,最常用的内置变换函数是累计函数:cumcount/cumsum/cumprod/cummax/cummin,它们的使用方式和聚合函数类似,只不过完成的是组内累计操作。...,其传入值为数据源的序列其传入值为数据源的序列,与agg的传入类型是一致的,其最后的返回结果是行列索引与数据源一致的DataFrame。...47.918519 1 173.62549 72.759259 2 173.62549 72.759259 组索引与过滤 过滤在分组中是对于组的过滤,而索引是对于行的过滤,返回值无论是布尔列表还是元素列表或者位置列表...'中的每个元素是否大于10,如果是,则将新列'new_column'中的值赋为0 df['new_column'] = df.apply(lambda row: 0 if row['column1']...> 10 else row['new_column'], axis=1) # 按行 最后的检查部分是按行传入apply方法,lambda row 是标明传入的是行,可以简单理解为df['new_column

    12010

    50道练习实践学习Pandas!

    11.取出age值大于3的行 df[df['age'] > 3] 12.取出age值缺失的行 df[df['age'].isnull()] 13.取出age在2,4间的行(不含) df[(df[...中插入新行k,然后删除该行 #插入 df.loc['k'] = [5.5, 'dog', 'no', 2] # 删除 df = df.drop('k') df 18.计算df中每个种类animal的数量...') df 22.对每种animal的每种不同数量visits,计算平均age,即,返回一个表格,行是aniaml种类,列是visits数量,表格值是行动物种类列访客数量的平均年龄 df.pivot_table...s是否是字典顺序排序的 s.index.is_lexsorted() # 方法二 # s.index.lexsort_depth == s.index.nlevels 44.选择二级索引为1, 3的行...50.在同一个图中可视化2组数据,共用X轴,但y轴不同 df = pd.DataFrame({"revenue":[57,68,63,71,72,90,80,62,59,51,47,52],

    3.8K10
    领券