11.取出age值大于3的行
df[df['age'] > 3]
12.取出age值缺失的行
df[df['age'].isnull()]
13.取出age在2,4间的行(不含)
df[(df[...中插入新行k,然后删除该行
#插入
df.loc['k'] = [5.5, 'dog', 'no', 2]
# 删除
df = df.drop('k')
df
18.计算df中每个种类animal的数量...')
df
22.对每种animal的每种不同数量visits,计算平均age,即,返回一个表格,行是aniaml种类,列是visits数量,表格值是行动物种类列访客数量的平均年龄
df.pivot_table...s是否是字典顺序排序的
s.index.is_lexsorted()
# 方法二
# s.index.lexsort_depth == s.index.nlevels
44.选择二级索引为1, 3的行...50.在同一个图中可视化2组数据,共用X轴,但y轴不同
df = pd.DataFrame({"revenue":[57,68,63,71,72,90,80,62,59,51,47,52],