首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python实现对规整的二维列表中每个子列表对应的值求和

大家好,我是Python进阶者。 一、前言 前几天在Python白银交流群有个叫【dcpeng】的粉丝问了一个Python列表求和的问题,如下图所示。...3] print(list([s1, s2, s3, s4])) 上面的这个代码可以实现,但是觉得太不智能了,如果每个子列表里边有50个元素的话,再定义50个s变量,似乎不太好,希望可以有个更加简便的方法...如果你还有其他方法,欢迎尝试,有结果的话,欢迎分享给我噢! 三、总结 大家好,我是Python进阶者。...这篇文章主要分享了使用Python实现对规整的二维列表中每个子列表对应的值求和的问题,文中针对该问题给出了具体的解析和代码演示,一共3个方法,顺利帮助粉丝顺利解决了问题。...最后感谢粉丝【dcpeng】提问,感谢【瑜亮老师】、【月神】、【Daler】给出的代码和具体解析,感谢粉丝【猫药师Kelly】等人参与学习交流。 小伙伴们,快快用实践一下吧!

4.6K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    注意力机制到底在做什么,QKV怎么来的?一文读懂Attention注意力机制

    \mathbf{X}^\top 相乘, \mathbf{X} 中的每一行与 \mathbf{X}^\top 的每一列相乘得到目标矩阵的一个元素, \mathbf{X}\mathbf{X}^\top 可表示为...Softmax的作用是对向量做归一化,那么就是对相似度的归一化,得到了一个归一化之后的权重矩阵,矩阵中,某个值的权重越大,表示相似度越高。...权重矩阵中某一行分别与词向量的一列相乘,词向量矩阵的一列其实代表着不同词的某一维度。...经过这样一个矩阵相乘,相当于一个加权求和的过程,得到结果词向量是经过加权求和之后的新表示,而权重矩阵是经过相似度和归一化计算得到的。...对相似度矩阵每个元素除以 \sqrt{d_k} , d_k 为 K 的维度大小。这个除法被称为Scale。

    14K73

    python演示推荐系统里的协同过滤算法

    与其他机器学习算法非常相似,推荐系统根据用户过去的行为进行预测。具体来说,它在根据经验预测用户对一组项目的偏好。...协同过滤有两类: 基于用户,衡量目标用户与其他用户的相似度。基于项目,衡量目标用户评分或交互的项目与其他项目之间的相似度。三、使用 Python 进行协同过滤 协作方法通常使用效用矩阵来制定。...推荐模型的任务是学习一个函数来预测每个用户的拟合度或相似度。矩阵通常是非常稀疏、就是维度巨大但里面大多数矩阵元素删除了值。在下面的矩阵中,每行代表一个用户,而列对应不同电影。...余弦相似度是查找向量相似度所需的最简单算法。矩阵中,每一行代表一个用户,而每一列对应不同的电影,每个单元格代表用户对该电影的评分。余弦相似度(p, q) = pq____|p|....(用户)或列(电影)的余弦或相关相似度,并推荐 k 最近邻居的项目。

    17010

    如何利用SQL实现余弦相似度匹配

    1.基本原理 余弦相似度是通过计算两个向量的夹角余弦值来评估它们的相似度,也可以说是根据两个空间向量的夹角来评估两个个体的差异度。...由下图可以看出,夹角越接近0°,余弦值越接近于1,这时它们之间的相似性越高,反之,夹角越接近180°,余弦值越接近于-1,这时它们之间的余弦相似度越低,当然等于-1不完全等同于他们之间没有相似度,这个得视情况而定...,可以看出其中有三列数据,两列int类型数据,一列char类型,接下来我们要做的就是将第三列 field3 转换为 int类型,并进行相似度计算。...SUM 是聚合函数,用于对前面乘法运算得到的每一行的乘积结果进行求和操作,使用 SUM 函数对所有行的乘积结果进行求和,将最终的点积值以 dot_product 作为列名返回。... SUM 对所有行的平方值进行求和,最后使用 SQRT 函数(求平方根函数)计算出总和的平方根,也就是 field1 这个 “向量” 的模,通过 AS field1_norm 给结果列命名为 field1

    6110

    用9行python代码演示推荐系统里的协同过滤算法

    与其他机器学习算法非常相似,推荐系统根据用户过去的行为进行预测。具体来说,它在根据经验预测用户对一组项目的偏好。...当然,我们更相信那些与我们有相似品味的朋友的推荐。 大多数协同过滤系统应用所谓的基于相似性索引的技术。在基于邻域的方法中,根据用户与活动用户的相似性来选择多个用户。...协同过滤有两类:  基于用户,衡量目标用户与其他用户的相似度。 基于项目,衡量目标用户评分或交互的项目与其他项目之间的相似度。...三、9行 Python 代码实现协同过滤  协作方法通常使用效用矩阵来制定。推荐模型的任务是学习一个函数来预测每个用户的拟合度或相似度。矩阵通常是非常稀疏、就是维度巨大但里面大多数矩阵元素删除了值。...在下面的矩阵中,每行代表一个用户,而列对应不同电影。余弦相似度是查找向量相似度所需的最简单算法。矩阵中,每一行代表一个用户,而每一列对应不同的电影,每个单元格代表用户对该电影的评分。

    59310

    从pandas中的这几个函数,我看懂了道家“一生二、二生三、三生万物”

    导读 pandas是用python进行数据分析最好用的工具包,没有之一!从数据读写到预处理、从数据分析到可视化,pandas提供了一站式服务。...当然,groupby的强大之处在于,分组依据的字段可以不只一列。例如想统计各班每门课程的平均分,语句如下: ? 不只是分组依据可以用多列,聚合函数也可以是多个。...普通聚合函数mean和agg的用法区别是,前者适用于单一的聚合需求,例如对所有列求均值或对所有列求和等;而后者适用于差异化需求,例如A列求和、B列求最值、C列求均值等等。...数据透视表本质上仍然数据分组聚合的一种,只不过是以其中一列的唯一值结果作为行、另一列的唯一值结果作为列,然后对其中任意(行,列)取值坐标下的所有数值进行聚合统计,就好似完成了数据透视一般。...既然二者如此相似,那么是否可以实现相互转换呢?答案是肯定的! 06 stack 和 unstack stack和unstack可以实现在如上两种数据结果中相互变换。

    2.5K10

    【数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    根据数据的来源,缺失值可以用不同的方式表示。最常见的是NaN(不是数字),但是,其他变体可以包括“NA”、“None”、“999”、“0”、“ ”、“-”。...isna()部分检测dataframe中缺少的值,并为dataframe中的每个元素返回一个布尔值。sum()部分对真值的数目求和。...当一行的每列中都有一个值时,该行将位于最右边的位置。当该行中缺少的值开始增加时,该行将向左移动。 热图 热图用于确定不同列之间的零度相关性。换言之,它可以用来标识每一列之间是否存在空值关系。...接近正1的值表示一列中存在空值与另一列中存在空值相关。 接近负1的值表示一列中存在空值与另一列中存在空值是反相关的。换句话说,当一列中存在空值时,另一列中存在数据值,反之亦然。...如果在零级将多个列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。

    4.8K30

    不同品种猫猫有多相似呢,Python 文本相似度计算

    数据处理 数据原始有很多列,我们需要把 O 列直至末尾的这些描述每个品种猫猫的文本合为一列: 以此计算每个品种的描述与其他品种描述的相似度,把“描述”列作为文本列表,“品种”作为索引,两两计算。...文本向量化必须两个对比的文本同时向量化操作,确保两文本向量化的长度一样才可进行计算,部分代码: 两对比文本向量化后,再进行相似度计算: 余弦相似度,值介于 0-1,越大说明两文本越相似。...从结果上看对比前两个,值要大于 0.9 才相当于有 60% 以上的相似度,前两种方法更为直观。...其他距离 其他距离的计算方法还有欧式距离,曼哈顿距离,切比雪夫距离,杰尔德距离,汉明距离,这些值的范围没有上限,越小说明文本越相似。...结果 小编使用了所有方法计算相似度,fuzzywuzz 方法计算的时间最快,其次是 difflib,且结果比较直观,其他方法都需要文本向量化在比较,所以在文本较长时,时间有点久。

    87320

    Python 谱聚类算法从零开始

    在谱聚类算法中,根据数据点之间的相似性而不是k-均值中的绝对位置来确定数据点属于哪个类别下。具体区别可通过下图直观看出: ?...谱聚类算法实现 谱聚类算法的基本思想是先根据样本点计算相似度矩阵,然后计算度矩阵和拉普拉斯矩阵,接着计算拉普拉斯矩阵前k个特征值对应的特征向量,最后将这k个特征值对应的特征向量组成 ?...即该算法可分为4个基本步骤: 构造相似性图 确定邻接矩阵W,度矩阵D和拉普拉斯矩阵L 计算矩阵L的特征向量 训练k均值模型并使用它来对数据进行分类 Python实现 下面就开始通过代码实现谱聚类算法。...当我们构建好邻接矩阵,我们就可以开始构造度矩阵。对于度矩阵的每一行,我们通过对邻接矩阵中相应行的所有元素求和来表示度矩阵的对角线。然后,我们通过从度矩阵中减去邻接矩阵来计算拉普拉斯矩阵。...计算得到的特征值和特征向量如下,可以看到特征值中有两个0. ? 接下来我们就根据特征向量对数据进行聚类分析。

    3.3K20

    近邻推荐之基于用户的协同过滤

    上面的这种情况其实就非常类似于基于用户的协同过滤,简单来说,先根据你的历史行为来计算出与你相似的其他用户,然后将这些相似用户消费过但你没消费的物品推荐给你。...分母是对用户 u 的 n 个相似用户的相似度进行求和,分子是把这 n 个相似用户对各自已消费的物品 i 的评分,按照相似度加权求和。...CSR:CSR是一个整体编码方式,由三部分构成,数值、列号和行偏移。 COO:COO每个元素用一个三元组表示(行号,列号,数值),只存储有值的元素,缺失值不存储。...这些存储格式,在常见的框架中都已经实现,比如 Python 中的 scipy 模块。 相似度计算 计算相似度时如果物品总量比较多,那么每个用户向量长度会很大,计算时花费的时间会比较长。...可以通过以下办法来缓解: 将相似度计算拆成 Map Reduce 任务,将原始矩阵 Map 成键为用户对,值为两个用户对同一个物品的评分之积,Reduce 阶段对这些乘积再求和,Map Reduce 任务结束后再对这些值归一化

    1.8K80

    CapsNet

    假设这里有一个卷积核(左图),除了曲线轨迹上的值很大,其他的值都是零,所以这个卷积核对旁边这种曲线(右图)就有很高的输出,也就是说对这种曲线有很高的识别,而对其他的曲线类型输出就低。...如图 上一列和下一列的图片属于同一类,仅仅视角不同。CapsNet和其他模型相比表现就要好很多。据说,最新的论文降低了45%的错误率,这是压倒性的优势。 那现在让我们来看一下CapsNet的具体架构。...但在胶囊网络中,每一个胶囊神经元都是向量,即包含多个值(如[x1, x2, x3, ..., xn], 具体个数n根据网络设计得到),所以每个胶囊神经元的权值W也应该是一个向量。...W依旧根据反向传播来更新。 网络的输入 全连接神经网络的输入即线性加权求和,胶囊网络很类似,但是它在线性求和阶段上多加了一个耦合系数C。...除了耦合系数C是通过动态路由更新的,整个网络其他的卷积参数和Capusle内的W都需要根据损失函数进行更新。

    36320

    基于协同过滤的推荐引擎(理论部分)

    今天看了协同过滤后发现其实整个算法大概和第一种的思想差不多,它最大的特点就是忽略了推荐的东西本身的属性,而是根据其他用户对它的喜好程度进行推荐的。...# 计算某个物品和所有其他物品的相似度,进行累加,连评分也累加,最后用累加的总评分/总相似度得到预测该用户对新物品的评分 # data_mat:物品-用户矩阵 # user:用户编号 # item:要预测评分的物品编号...(比如0~5) 代码解析: 这里比较难理解的就是overlap一句,data_ma[:,item]代表取矩阵中编号为item的那一列,.A操作是将返回值变为ndarray,data_ma[:,item...].A>0会产生一个shape相同的布尔型矩阵,根据是否大于零置True或False,logical_and方法对两个布尔矩阵求逻辑与,nonzero方法找出逻辑与后非零值的下标。...整个过程的作用就是从两个物品列中晒出两物品都被评分的行的下标,用于相似度计算。

    92690

    基于协同过滤的推荐引擎(理论部分)

    今天看了协同过滤后发现其实整个算法大概和第一种的思想差不多,它最大的特点就是忽略了推荐的东西本身的属性,而是根据其他用户对它的喜好程度进行推荐的。...1.0/(1.0 + 欧式距离)的作用是使相似度的值在0到1之间变化,越相似,相似度的值越大,距离为0时,相似度为1。 皮尔逊相关系数 ?...一般评分预估算法流程图.PNG # 计算某个物品和所有其他物品的相似度,进行累加,连评分也累加,最后用累加的总评分/总相似度得到预测该用户对新物品的评分 # data_mat:物品-用户矩阵 # user...,将评分归到相似度的范围(比如0~5) 代码解析: 这里比较难理解的就是overlap一句,data_ma[:,item]代表取矩阵中编号为item的那一列,.A操作是将返回值变为ndarray,data_ma...整个过程的作用就是从两个物品列中晒出两物品都被评分的行的下标,用于相似度计算。

    1K50

    看图学NumPy:掌握n维数组基础知识点,看这一篇就够了

    △在末尾添加元素时,Python列表复杂度为O(1),NumPy复杂度为O(N) 向量运算 向量初始化 创建NumPy数组的一种方法是从Python列表直接转换,数组元素的类型与列表元素类型相同。...和一维数组一样,上图的view表示,切片数组实际上并未进行任何复制。修改数组后,更改也将反映在切片中。 axis参数 在许多操作(例如求和)中,我们需要告诉NumPy是否要跨行或跨列进行操作。...矩阵统计 就像之前提到的统计函数一样,二维数组接受到axis参数后,会采取相应的统计运算: ? 二维及更高维度中,argmin和argmax函数返回最大最小值的索引: ?...不过NumPy具有多个函数,允许按列进行排序: 1、按第一列对数组排序:a[a[:,0].argsort()] ? argsort排序后,此处返回原始数组的索引数组。...最后,还有一个函数,可以在处理多维数组时节省很多Python循环,并使代码更简洁,这就是爱因斯坦求和函数einsum: ? 它将沿重复索引的数组求和。

    6K20

    Python数据分析作业一:NumPy库的使用

    [0, -1]表示要选择第一行和最后一行,-2:表示要选择倒数第二列到最后一列(包括最后一列)。...np.sum(r1中的np.sum()函数对上述条件判断的结果进行求和,由于布尔类型的True在计算时会被转换成 1,False会被转换成 0,因此最终的求和结果就是小于 60...输出结果: [[1 1 2] [1 2 1] [1 1 1] [1 1 1]] 11、对r1数组的每一列按降序排序,排序结果放在数组r2中并输出 r2 = np.sort(r1,axis=0)[:...:-1,:] r2 np.sort(r1, axis=0)使用 NumPy 的sort()函数对二维数组r1按列进行排序,其中axis=0表示沿着列的方向进行排序,即每一列都会单独排序。...rows = pos // r5.shape[1]:根据位置索引计算每个元素在原矩阵中的行坐标。 cols = pos % r5.shape[1]:根据位置索引计算每个元素在原矩阵中的列坐标。

    2600

    独家 | 从零开始用python搭建推荐引擎(附代码)

    这个算法首先计算每个用户之间的相似性,然后根据每个相似度计算预测值。具有高相关性的用户,一般都相似。 基于这些预测值给出推荐。我们通过一个例子来理解它: 用户-电影评分矩阵: ?...解决这个问题的一种方法是只选择几个用户(邻居)而不是对所有的值进行预测,也就是说,我们只选择几个相似值而不是对所有相似值进行预测: 选择一个相似度阈值并选择该值以上的所有用户 随机选择用户 按照相似度值的降序排列相邻用户...商品-商品协同过滤 在这个算法中,我们计算每一对商品之间的相似度。 ?...这个算法的工作原理类似于用户-用户协同过滤,仅仅做了一点小小的改变——不是对“相邻用户”的评分进行加权求和,而是对“相邻商品”的评分进行加权求和。预测公式如下: ? 我们计算商品之间的相似性: ?...: train_data:SFrame包含了我们所需要的训练数据 user_id:这一列包含了每个用户的ID item_id: 这一列包含了每一个要被推荐的电影(电影ID) target:这一列包含了用户给的评分或等级

    1.9K40

    十一.数据分析之Numpy、Pandas、Matplotlib和Sklearn入门知识万字详解

    Gensim实现了潜在语义分析(LSA)、LDA模型、TF-IDF、Word2vec等在内的多种主题模型算法,并提供了诸如相似度计算等API接口。...[1][0],其结果为第2行,第一列,即为4;获取某一行的所有值,则为c[1][:],其结果为[4,5,6,7];获取某行并进行切片操作,c[0][:-1]获取第一行,从第一列到倒数第一列,结果为[1,2,3...同时如果想获取矩阵中的某一列数据怎么实现呢?因为在进行数据分析时,通常需要获取某一列特征进行分析,或者作为可视化绘图的x或y轴数据。...data.sum()表示对三个用户的消费数据求和,data.head()表示预览输出前5行数据。输出数据如下,NaN表示空值(Not a Number)。...mm = data.sum() 然后调用data.sum()函数求和,返回值为[55, 2134.510, 3017.120, 3951.095],对应三个用户的消费金额总额,第一列为十行数据序号求和。

    3.2K11

    一文搞懂Transformer架构的三种注意力机制

    (Value)矩阵;这三种矩阵中,每一行都对应了输入文本中的一个分词,每一列则对应了这个分词的某一个特性(Feature)或者维度; 简单来说,查询矩阵里的数据代表了我们关注的词,键矩阵里的数据用来帮我们计算这些词之间的相似度...(即注意力分数:attention score,向量点乘可以计算相似度),而值矩阵里的数据则用来根据这些相似度计算出最终的输出结果; 为了确保计算过程中的数据不会因为维度(即键的大小)太大而爆炸,或者太小而消失...然后,根据“注意力分数”对所有值进行加权平均;在注意力层中,每个位置的查询(Q)序列都提供一个查询向量,而上下文序列则充当了一个字典,每个位置提供一个键和值向量;在使用这些向量之前,注意力层会用一个全连接层对输入向量进行投影...Q = 解码器中因果注意力层的输出向量 K = 编码器输出的注意力向量 V = 编码器输出的注意力向量 如下所示,每一列代表了对上下文序列的加权求和。...要构建一个因果自注意力层,在计算注意力分数和求和注意力值时需要使用适当的掩码,因为输出序列也是一次性输入的,但在计算前面分词的时候是不希望它后面的分词也参与计算的。

    10.2K11

    计算机基础操作Excel函数使用1

    一、vlookup函数 作用:根据某个字段去查找对应的另一个字段的值。 这里说的字段指的是表格的某个表头列。 参数: 第一个:需要根据什么值进行查找匹配(这个值必须是第二个参数中的第一列)。...$B$19,2,FALSE) 解释: 根据D3单元格的值,到“图书定价!$A$3:图书定价!$B$19”范围内进行匹配,根据精确匹配到的行,最终显示第二列的值。...参数: 第一个:需要求和的区域(一般是某一列)。...-Internet应用 python中函数递归VS循环 python中函数的可变参数 python中自定义序列的实现 python第一个程序,定位在小学数学还是幼儿园?...python输入与输出涨姿势 python中整型与浮点型的数值转换

    92230
    领券