首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。 b、一个计算每个分区的函数。...只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。...(func, [numTasks]) 在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置...RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。...8:DAG的生成:   DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,

1.2K100

【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )

一、RDD#filter 方法 1、RDD#filter 方法简介 RDD#filter 方法 可以 根据 指定的条件 过滤 RDD 对象中的元素 , 并返回一个新的 RDD 对象 ; RDD#filter...new_rdd 是过滤后的 RDD 对象 ; 2、RDD#filter 函数语法 RDD#filter 方法 语法 : rdd.filter(func) 上述 方法 接受一个 函数 作为参数 , 该 函数参数...定义了要过滤的条件 ; 符合条件的 元素 保留 , 不符合条件的删除 ; 下面介绍 filter 函数中的 func 函数类型参数的类型 要求 ; func 函数 类型说明 : (T) -> bool...传入 filter 方法中的 func 函数参数 , 其函数类型 是 接受一个 任意类型 元素作为参数 , 并返回一个布尔值 , 该布尔值的作用是表示该元素是否应该保留在新的 RDD 中 ; 返回 True...) # 输出过滤后的结果 print(even_numbers.collect()) 上述代码中 , 原始代码是 1 到 9 之间的整数 ; 传入 lambda 匿名函数 , lambda x: x

48410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark RDD的Shuffle

    Shuffle的概念来自Hadoop的MapReduce计算过程。当对一个RDD的某个分区进行操作而无法精确知道依赖前一个RDD的哪个分区时,依赖关系变成了依赖前一个RDD的所有分区。...比如,几乎所有类型的RDD操作,都涉及按key对RDD成员进行重组,将具有相同key但分布在不同节点上的成员聚合到一个节点上,以便对它们的value进行操作。...这个重组的过程就是Shuffle操作。因为Shuffle操作会涉及数据的传输,所以成本特别高,而且过程复杂。 下面以reduceByKey为例来介绍。...在进行reduce操作之前,单词“Spark”可能分布在不同的机器节点上,此时需要先把它们汇聚到一个节点上,这个汇聚的过程就是Shuffle,下图所示。  ...因为Shuffle操作的结果其实是一次调度的Stage的结果,而一次Stage包含许多Task,缓存下来还是很划算的。Shuffle使用的本地磁盘目录由spark.local.dir属性项指定。

    65430

    Spark RDD的Transformation

    RDD的Transformation是指由一个RDD生成新RDD的过程,比如前面使用的flatMap、map、filter操作都返回一个新的RDD对象,类型是MapPartitionsRDD,它是RDD...所有的RDD Transformation都只是生成了RDD之间的计算关系以及计算方法,并没有进行真正的计算。...RDD Transformation生成的RDD对象的依赖关系 除了RDD创建过程会生成新的RDD外,RDD Transformation也会生成新的RDD,并且设置与前一个RDD的依赖关系。...结合每一个RDD的数据和它们之间的依赖关系,每个RDD都可以按依赖链追溯它的祖先,这些依赖链接就是RDD重建的基础。因此,理解了RDD依赖,也就理解了RDD的重建容错机制。 下面以map为例进行介绍。...在Spark中,RDD是有依赖关系的,这种依赖关系有两种类型。 窄依赖。依赖上级RDD的部分分区。 Shuffle依赖。依赖上级RDD的所有分区。 对应类的关系如下图所示。

    38540

    【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

    的 分布式计算引擎 ; RDD 是 Spark 的基本数据单元 , 该 数据结构 是 只读的 , 不可写入更改 ; RDD 对象 是 通过 SparkContext 执行环境入口对象 创建的 ; SparkContext...; 2、RDD 中的数据存储与计算 PySpark 中 处理的 所有的数据 , 数据存储 : PySpark 中的数据都是以 RDD 对象的形式承载的 , 数据都存储在 RDD 对象中 ; 计算方法...: 大数据处理过程中使用的计算方法 , 也都定义在了 RDD 对象中 ; 计算结果 : 使用 RDD 中的计算方法对 RDD 中的数据进行计算处理 , 获得的结果数据也是封装在 RDD 对象中的 ; PySpark...中 , 通过 SparkContext 执行环境入口对象 读取 基础数据到 RDD 对象中 , 调用 RDD 对象中的计算方法 , 对 RDD 对象中的数据进行处理 , 得到新的 RDD 对象 其中有..., [1, 2, 3, 4, 5] rdd3 分区数量和元素: 12 , [1, 2, 3, 4, 5] 字典 转换后的 RDD 数据打印出来只有 键 Key , 没有值 ; data4 = {

    49510

    什么是RDD?带你快速了解Spark中RDD的概念!

    - 3)A list of dependencies on other RDDs 一个rdd会依赖于其他多个rdd,这里就涉及到rdd与rdd之间的依赖关系,后期spark任务的容错机制就是根据这个特性而来...分区函数的作用:它是决定了原始rdd的数据会流入到下面rdd的哪些分区中。...spark的分区函数有2种:第一种hashPartitioner(默认值), 通过 key.hashcode % 分区数=分区号 第二种RangePartitioner,是基于一定的范围进行分区。...3.RDD特点 RDD表示只读的分区的数据集,对RDD进行改动,只能通过RDD的转换操作,由一个RDD得到一个新的RDD,新的RDD包含了从其他RDD衍生所必需的信息。...3.4 缓存 如果在应用程序中多次使用同一个RDD,可以将该RDD缓存起来,该RDD只有在第一次计算的时候会根据血缘关系得到分区的数据,在后续其他地方用到该RDD的时候,会直接从缓存处取而不用再根据血缘关系计算

    3K52

    Spark Core入门2【RDD的实质与RDD编程API】

    ,取出的是一个个的List(如ListList("a b c", "a b b")和List("e f g", "a f g")等),所以操作的是RDD中的List,第二个flatMap取出的是scala...所以第一个flatMap会将任务分发到集群中不同的机器执行,而第二个flatMap会在集群中的某一台机器对某一个List进行计算。...如果不指定分区数量,则根据集群中的总核数(实际上是集群中的总线程数)生成相等数量的结果文件。 一般来说  有多少个输入切片,就会产生多少个分区。...)(math.max(_, _), _ + _) maxSum: Int = 13 总共有两个分区:分区0为1,2,3,4  分区1为5,6,7,8,9   第一个分区最大值为4,第二个分区最大值为9,...Int = 19 总共有两个分区:分区0为1,2,3,4  分区1为5,6,7,8,9   第一个分区最大值为5(初始值),第二个分区最大值为9,全局聚合后的结果还需与初始值相加,结果为14+5=19

    1.1K20

    【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

    RDD 中的每个元素提取 排序键 ; 根据 传入 sortBy 方法 的 函数参数 和 其它参数 , 将 RDD 中的元素按 升序 或 降序 进行排序 , 同时还可以指定 新的 RDD 对象的 分区数...; 返回值说明 : 返回一个新的 RDD 对象 , 其中的元素是 按照指定的 排序键 进行排序的结果 ; 2、RDD#sortBy 传入的函数参数分析 RDD#sortBy 传入的函数参数 类型为 :..., 获取到每个单词 , 根据上述单词列表 , 生成一个 二元元组 列表 , 列表中每个元素的 键 Key 为单词 , 值 Value 为 数字 1 , 对上述 二元元组 列表 进行 聚合操作 , 相同的...键 Key 对应的 值 Value 进行相加 ; 将聚合后的结果的 单词出现次数作为 排序键 进行排序 , 按照升序进行排序 ; 2、代码示例 对 RDD 数据进行排序的核心代码如下 : # 对 rdd4...: ", rdd2.collect()) # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2.map(lambda element: (element

    49310

    了解Spark中的RDD

    RDD设计背景 RDD被设计用来减少IO出现的,提供了一中抽象的数据结构,不用担心的底层数据的分布式特性。只需将具体的应用逻辑将一些列转换进行处理。不同的RDD之间的转换操作形成依实现管道话。...RDD提供的是一种高度受限的共享内存模型,既RDD是只读的记录分区的集合,不能直接修改,只能给予文档sing的物理存储中的数据来创建RDD,或者是从其他RDD操作上执行转换操作得到新的RDD。...两类的操作区别是转换是用来转换RDD得到新的RDD,行动操作是接收RDD但是返回的就不是RDD了,是值或者其他集合等内容。...假如我们在输入数据的时候,已经把数据进行了协同划分,比如我们在数据处理的时候进行的了根据键值分区,把属于多个父RDD的其中一个区的key落在了子RDD的一个分区里面,不产生在父RDD的一个分区落在子RDD...对于性能而言,窄依赖的失败恢复比较高效,因为他只需要根据自己的父节点进行数据分区恢复即可,但是宽依赖就不行了,需要重新计算过程设计到的父RDD分区,性能损耗大。

    73450

    Spark之【RDD编程】详细讲解(No4)——《RDD中的函数传递》

    ---- 5.RDD中的函数传递 在实际开发中我们往往需要自己定义一些对于RDD的操作,那么此时需要注意的是,初始化工作是在Driver端进行的,而实际运行程序是在Executor端进行的...下面我们看几个例子: 5.1 传递一个方法 1.创建一个类 class Search(query:String){ //过滤出包含字符串的数据 def isMatch(s: String):...Boolean = { s.contains(query) } //过滤出包含字符串的RDD def getMatch1 (rdd: RDD[String]): RDD[String]...= { rdd.filter(isMatch) } //过滤出包含字符串的RDD def getMatche2(rdd: RDD[String]): RDD[String] =...class Search() extends Serializable{...} 2)将类变量query赋值给局部变量 修改getMatche2方法内部: //过滤出包含字符串的RDD def getMatche2

    51610

    spark rdd的另类解读

    1 Spark的RDD 提到Spark必说RDD,RDD是Spark的核心,如果没有对RDD的深入理解,是很难写好spark程序的,但是网上对RDD的解释一般都属于人云亦云、鹦鹉学舌,基本都没有加入自己的理解...这就涉及到了spark中分区(partition)的概念,也就是数据的切分规则,根据一些特定的规则切分后的数据子集,就可以在独立的task中进行处理,而这些task又是分散在集群多个服务器上并行的同时的执行...去处理这个Block的数据,而如果HDFS上的文件不可切分,比如压缩的zip或者gzip格式,那么一个文件对应一个partition;如果数据在入库时是随机的,但是在处理时又需要根据数据的key进行分组...(group),那么就需要根据这个数据源的key对数据在集群中进行分发(shuffle),把相同key的数据“归类”到一起,如果把所有key放到同一个partition里,那么就只能有一个task来进行归类处理...),那么当数据子集丢失后,spark就会根据lineage,复原出这个丢失的数据子集,从而保证Datasets的弹性。

    64620

    Spark中的RDD介绍

    我们在Java程序中定义的那个类型是JavaRDD,实际上是在是对本身的RDD类型的一个封装, 我们想亲密接触RDD,直接翻翻这部分的源码 ,我们看下图一: 图一:Rdd源码头注释 可能也是这部分源码是重中之重...而且,我们通过继承结构可以看到,RDD的子类就是一堆一堆的,可以知道这部分具体实现就是对应不同数据数据进行的处理,统一作为RDD使用。 ? 图三:RDD的定义 ?...图四:RDD的定义 对于不可变的数据集,这个好说,就是我们操作之后不会改变原来的元素的值。...图五:RDD可以重复被使用的 接下来的是介绍的存储和运行过程,RDD的存储有点像我们的hdfs中的block一样。...spark认为内存中的计算是快速的,所以当作业失败的时候,我们只需要从源头rdd再计算一次就可以得到整目标rdd,为了实现这个,我们需要追溯rdd血缘信息,所以每个rdd都保留了依赖的信息。

    58510

    RDD的几种创建方式

    RDD的数据默认的情况下是存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘。...Spark Core为我们提供了三种创建RDD的方式,包括:  使用程序中的集合创建RDD  使用本地文件创建RDD  使用HDFS文件创建RDD 2.1  应用场景 使用程序中的集合创建RDD,主要用于进行测试...Spark官方的建议是,为集群中的每个CPU创建2-4个partition。Spark默认会根据集群的情况来设置partition的数量。...但是也可以在调用parallelize()方法时,传入第二个参数,来设置RDD的partition数量。...block创建一个partition,但是也可以通过textFile()的第二个参数手动设置分区数量,只能比block数量多,不能比block数量少 2.2.3  Spark支持的其余方法,创建RDD

    1.3K30

    Spark RDD中的持久化

    虽然持久化操作在绝大部分情况下都是将RDD缓存在内存中,但一般都会在内存不够时用磁盘顶上去(比操作系统默认的磁盘交换性能高很多)。当然,也可以选择不使用内存,而是仅仅保存到磁盘中。...所以,现在Spark使用持久化(persistence)这一更广泛的名称。 如果一个RDD不止一次被用到,那么就可以持久化它,这样可以大幅提升程序的性能,甚至达10倍以上。...默认情况下,RDD只使用一次,用完即扔,再次使用时需要重新计算得到,而持久化操作避免了这里的重复计算,实际测试也显示持久化对性能提升明显,这也是Spark刚出现时被人称为内存计算的原因。...持久化的方法是调用persist()函数,除了持久化至内存中,还可以在persist()中指定storage level参数使用其他的类型。...,总共两份副本,可提升可用性 此外,RDD.unpersist()方法可以删除持久化。

    74530

    大数据随记 —— RDD 的创建

    一、从集合(内存)中创建 RDD Spark 会将集合中的数据拷贝到集群上去,形成一个分布式的数据集合,也就是形成一个 RDD。...② parallelize() 的 partition 数量 1、Spark 默认会根据集群的情况来设置 partition 的数量,也可以在调用 parallelize 方法时,传入第二个参数,来设置...二、从加载文件(外存)创建 RDD Spark 支持使用任何 Hadoop 所支持的存储系统上的文件创建 RDD,例如 HDFS、HBase 等文件。...通过 调用 SparkContext 的 textFile() 方法,可以针对本地文件或 HDFS 文件创建 RDD。通过读取文件来创建 RDD,文件中的每一行就是 RDD 中的一个元素。...转换成新的 RDD 将会在 RDD 的转换中讲解。

    17210

    Java接入Spark之创建RDD的两种方式和操作RDD

    ,使其能再并行操作中被有效地重复使用,最后RDD能自动从节点故障中恢复 spark的第二个抽象概念是共享变量(shared variables),它可以在并行操作中使用,在默认情况下,当spark将一个函数以任务集的形式在不同的节点上并行运行时...,会将该函数所使用的每个变量拷贝传递给每一个任务中,有时候,一个变量需要在任务之间,或者驱动程序之间进行共享,spark支持两种共享变量: 广播变量(broadcast variables),它可以在所有节点的内存中缓存一个值...并行集合,是通过对于驱动程序中的集合调用JavaSparkContext.parallelize来构建的RDD) 第一种方式创建 下面通过代码来理解RDD和怎么操作RDD package com.tg.spark...,第二个参数为函数操作完后返回的结果类型 JavaRDD lineLengths = lines.map(new Function()...lineLengths.persist(StorageLevel.MEMORY_ONLY()); } //定义map函数 //第一个参数为传入的内容,第二个参数为函数操作完后返回的结果类型

    1.8K90
    领券