具体解释如下: 1、MATCH(H2, I2:I10, 0): MATCH 函数查找 H2 单元格中的值在范围 I2:I10 中的位置。 参数 0 表示进行精确匹配。...如果找到了匹配的值,MATCH 函数将返回匹配项在该范围中的相对位置(例如,找到匹配项在 I3,则返回 2,因为 I3 是在 I2:I10 范围中的第 2 行)。...如果未找到匹配项,MATCH 将返回错误值 #N/A。 2、ISNUMBER(MATCH(H2, I2:I10, 0)): ISNUMBER 函数用于检查 MATCH 函数的结果是否为一个数字。...3、IF(ISNUMBER(MATCH(H2, I2:I10, 0)), H2, ""): IF 函数根据 ISNUMBER 的结果进行判断: 如果结果为 TRUE(即 H2 的值在范围 I2:I10...如果结果为 FALSE(即 H2 的值在范围 I2:I10 中不存在),则返回空白 ""。
图1 在下图2所示的工作簿GetData.xlsm中,根据列C中的数据,在上图1的工作簿Data.xlsx的列E中查找是否存在相应数据的单元格。 ?...图2 然后,将Data.xlsx中对应行的列I至列K单元格中的数据复制到GetData.xlsm相应的单元格中,如下图3所示。 ?...Set wksData =Workbooks("Data.xlsx").Sheets("Sheet1") '判断所选单元格是否在列C中 If ActiveCell.Column... 3 Then MsgBox ("请选择列C中的单元格或单元格区域.")...Exit Sub Else '遍历所选的单元格 For Each rng In Selection '在数据工作表中查找相应的值所在的单元格
连接另一个Index对象,产生新的Index对象 3 .insert(loc,e) 在loc位置增加一个元素 4 .delete(loc) 删除loc位置处的元素 5 .union(idx) 计算并集...举例:按索引提取单行的数值 df_inner.loc[3] 四、DataFrame选取和重新组合数据的方法 序号 方法 说明 1 df[val] 从DataFrame选取单列或一组列;在特殊情况下比较便利...:布尔型数组(过滤行)、切片(行切片)、或布尔型DataFrame(根据条件设置值) 2 df.loc[val] 通过标签,选取DataFrame的单个行或一组行 3 df.loc[:,val] 通过标签...方法,可以计算其列或行跟另一个Series或DataFrame之间的相关系数。...默认分隔符为制表符(t) 3 read_ fwf 读取定宽列格式数据(也就是说,没有分隔符) 4 read_clipboard 读取剪贴板中的数据,可以看做read_table的剪贴板版。
举例:按索引提取单行的数值 df_inner.loc[3] 四、DataFrame选取和重新组合数据的方法 序号 方法 说明 1 df[val] 从DataFrame选取单列或一组列;在特殊情况下比较便利...:布尔型数组(过滤行)、切片(行切片)、或布尔型DataFrame(根据条件设置值) 2 df.loc[val] 通过标签,选取DataFrame的单个行或一组行 3 df.loc[:,val] 通过标签...DataFrame的corrwith方法,可以计算其列或行跟另一个Series或DataFrame之间的相关系数。...默认分隔符为逗号 2 read_table 从文件、URL、文件型对象中加载带分隔符的数据。...默认分隔符为制表符(t) 3 read_ fwf 读取定宽列格式数据(也就是说,没有分隔符) 4 read_clipboard 读取剪贴板中的数据,可以看做read_table的剪贴板版。
上一集开始学习了Pandas的数据结构(Series和DataFrame),以及DataFrame一些基本操作:改变索引名、增加一列、删除一列、排序。 今天我将继续学习Pandas。...一、描述性统计 想拿一个简单的数据试试手,翻到了一份我国2012-2015年季度GDP的数据,如下表(单位:万亿), ? 想整理到DataFrame中,如何处理?...除了read_csv,还有几种读取方式: 函数 说明 read_csv 读取带分隔符的数据,默认分隔符为逗号 read_table 读取带分隔符的数据,默认分隔符为制表符 read_fwf 读取固定宽格式数据...(无分隔符) read_clipboard 读取剪贴板中的数据 read_table可以读取txt的文件,说到这里,想到一个问题——如果txt文件的分隔符很奇怪怎么办?...这个testSet.txt文件用“loves”做分隔符! 隐隐觉得有人向我表白,但是有点恶心...... 在实际中,更可能是某种乱码,解决这种特殊分隔符,用 sep= 即可。 ?
9、10、11行三种方式均可以导入文本格式的数据。 特殊说明:第9行使用的条件是运行文件.py需要与目标文件CSV在一个文件夹中的时候可以只写文件名。...5、文本中缺失值处理,缺失数据要么是没有(空字符串),要么是用某个标记值表示的,默认情况下,pandas会用一组经常出现的标记值进行识别,如NA、NULL等。查找出结果以NAN显示。...7、对于不是使用固定分隔符分割的表格,可以使用正则表达式来作为read_table的分隔符。 (’\s+’是正则表达式中的字符)。...也可以根据多个键(列)进行合并,用on传入一个由列名组成的列表即可。...(2)对于pandas对象(如Series和DataFrame),可以pandas中的concat函数进行合并。
详解:标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针。...(参考:Series与DataFrame) NaN/None: python原生的None和pandas, numpy中的numpy.NaN尽管在功能上都是用来标示空缺数据。...文件路径 sep或者delimiter 字段分隔符 header 列名的行数,默认是0(第一行) index_col 列号或名称用作结果中的行索引 names 结果的列名称列表 skiprows 从起始位置跳过的行数...千数量的分隔符 3.5处理无效值 这里需要掌握三个函数: pandas.isna(): 判断哪些值是无效的 pandas.DataFrame.dropna(): 抛弃无效值 pandas.DataFrame.fillna...(): 将无效值替换成为有效值 具体用法参照:处理无效值 4、Pandas常用函数 函数 用法 DataFrame.duplicated() DataFrame的duplicated方法返回一个布尔型
import pandas as pd import numpy as np 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: df = pd.read_csv...DataFrame,每个组只有一列。...方法 描述 cat() 连接字符串 split() 在分隔符上分割字符串 rsplit() 从字符串末尾开始分隔字符串 get() 索引到每个元素(检索第i个元素) join() 使用分隔符在系列的每个元素中加入字符串...get_dummies() 在分隔符上分割字符串,返回虚拟变量的DataFrame contains() 如果每个字符串都包含pattern / regex,则返回布尔数组 replace() 用其他字符串替换...extract() 在每个元素上调用re.search,为每个元素返回一行DataFrame,为每个正则表达式捕获组返回一列 extractall() 在每个元素上调用re.findall,为每个匹配返回一行
sep(可选,默认为逗号):指定csv文件中数据的分隔符。 delimiter(可选,默认为None):与sep参数功能相同,用于指定分隔符。...返回值:返回一个DataFrame对象,表示读取的表格数据。 示例 导入(爬取)网络数据 在Python的数据分析中,除了可以导入文件和数据库中的数据,还有一类非常重要的数据就是网络数据。...index_col:设置作为索引列的列号或列名,默认为None,即不设置索引列。 skiprows:指定要跳过的行数。可以是一个整数(表示跳过的行数)或一组整数(表示要跳过的行号)。...返回值: 如果HTML文件中只有一个表格,则返回一个DataFrame对象。 如果HTML文件中有多个表格,则返回一个包含所有表格的列表,每个表格都以DataFrame对象的形式存储在列表中。...函数是pandas库中的一个方法,用于将DataFrame对象保存为CSV文件。
前言在使用 Pandas 进行数据分析和处理时,read_csv 是一个非常常用的函数,用于从 CSV 文件中读取数据并将其转换成 DataFrame 对象。...delimiter: 字段分隔符,sep的别名。header: 用作列名的行号,默认为0(第一行),如果没有列名则设为None。names: 列名列表,用于结果DataFrame。...用作行索引的列编号或列名index_col参数在使用pandas的read_csv函数时用于指定哪一列作为DataFrame的索引。...如果设置为None(默认值),CSV文件中的行索引将用作DataFrame的索引。如果设置为某个列的位置(整数)或列名(字符串),则该列将被用作DataFrame的索引。...在实际应用中,根据数据的特点和处理需求,灵活使用 read_csv 的各种参数,可以更轻松、高效地进行数据读取和预处理,为数据分析和建模提供更好的基础。
首先,了解下pandas中两个主要的数据结构,一个是Series,另一个是DataFrame。 Series一种增强的一维数组,类似于列表,由索引(index)和值(values)组成。...DataFrame是一个类似表格的二维数据结构,索引包括列索引和行索引,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame的每一行和每一列都是一个Series。..., sep, header,encoding) 「参数解释」 filename:文件路径,可以设置为绝对路径或相对路径 sep:分隔符,常用的有逗号 , 分隔、\t 分隔,默认逗号分隔,read_table...「两种查询方法的介绍」 「loc」 根据行,列的标签值查询 「iloc」 通过行号索引行数据,行号从0开始,逐次加1。...df.dropna(axis = 1) # 删除有缺失的列 当然了,pandas除了读取csv和excel文件之外,读写数据的方法还有很多种,感兴趣的话,大家可以根据官方文档学习。
参考链接: Python | 使用Pandas进行数据分析 相关系数和协方差唯一值值计数及成员资格处理缺失数据层次化索引数据透视生成重排分级次序根据级别汇总统计列索引转为行索引读取文件导出文件数据库风格的...DataFrame合并pandas知识体系图 Pandas是一个开源的Python数据分析库。...纽约大学柯朗研究所博士后Chris Stucchio在文章《别老扯什么Hadoop了,你的数据根本不够大》中指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。...,Series 读取文件 #读取文本格式的数据 pd.read_csv('',nrows=1) #读取带分隔符的数据,如txt等,sep或delimiter为分隔符或正则表达式,Sep默认分隔符为空格...的索引跟调用者DataFrame某个列之间的连接 left1.join(right1,on='key') #索引合并也可以传入另一个DataFrame #another和right2的行数相等 left2
分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。...如果文件不规则,行尾有分隔符,则可以设定index_col=False 来是的pandas不适用第一列作为行索引。...usecols : array-like, default None 返回一个数据子集,该列表中的值必须可以对应到文件中的位置(数字可以对应到指定的列)或者是字符传为文件中的列名。...squeeze : boolean, default False 如果文件值包含一列,则返回一个Series prefix : str, default None 在没有列标题时,给列添加前缀。...na_values : scalar, str, list-like, or dict, default None 一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。默认为‘1.
其中,to_csv函数是pandas库中非常常用的一个函数,用于将DataFrame对象中的数据保存为CSV(逗号分隔值)文件。...sep:指定保存的CSV文件中的字段分隔符,默认为逗号(,)。na_rep:指定表示缺失值的字符串,默认为空字符串。columns:选择要被保存的列。...(data)# 将DataFrame保存为CSV文件df.to_csv('data.csv', index=False)在上面的示例中,我们首先创建了一个示例的DataFrame,包含了姓名、年龄和性别三个列...在实际应用中,我们可以根据具体需求和数据特点选择适合的参数配置,来实现更加灵活的数据保存操作。...此外,不同国家和地区使用不同的标准来定义CSV文件的分隔符,使用默认逗号分隔符在不同环境中可能不具备可移植性。
但如果需要读取数据量很大的时候,可以添加一个参数--nrows=5,来先加载少量数据,这可以避免使用错误的分隔符,因为并不是所有的都采用逗号分隔,然后再加载整个数据集。 Ps....,使用这个参数的另一个好处是对于包含不同类型的列,比如同时包含字符串和整型的列,这个参数可以指定该列就是字符串或者整型的类型,避免在采用该列作为键进行融合不同表的时候出现错误。...这可以通过采用.isnull() 和 .sum() 来计算特定列的缺失值数量: import pandas as pd import numpy as np df = pd.DataFrame({ 'id...而在 pandas 中,可以如下所示: df_filter = df['ID'].isin(['A001','C022',...]) df[df_filter] Percentile groups 假设有一个都是数值类型的列...另一个技巧是处理混合了整数和缺失值的情况。当某一列同时有缺失值和整数,其数据类型是 float 类型而不是 int 类型。
pandas的解析函数 函数 描述 read_csv 读取csv文件,逗号为默认的分隔符 read_table 读取table文件,也就是txt文件,制表符('\t')为默认分隔符 read_clipboard...文件中读取所有表格数据 read_json 从JSON字符串中读取数据 read_sql 将SQL查询结果读取为pandas的DataFrame read_stata 读取Stata格式的数据集 read_feather...可以指定行和列的标签是否被写入,值为True或False;columns可以根据指定的列的顺序传入。...读取文本文件(txt),常用参数有: (1)sep:指定分隔符,默认为逗号 (2)header = None:取消读取首行 (3)names:指定列名,是一个列表 (4)index_col:指定索引列...,可以为单列,也可以为多列 (5)skiprows:跳过前n行 (6)na_values:指定缺失值标识 (7)nrows:读取前n行 pandas输出文本文件(txt),常用参数有: (1)sep:指定分隔符
当我们在jupyter输出的时候,它会自动为我们将DataFrame中的内容以表格的形式展现。...如果是一些比较特殊格式的,也没有关系,我们使用read_table,它可以从各种文本文件中读取数据,通过传入分隔符等参数完成创建。...比如在上一篇验证PCA降维效果的文章当中,我们从.data格式的文件当中读取了数据。该文件当中列和列之间的分隔符是空格,而不是csv的逗号或者是table符。...既然是dict我们自然可以根据key值获取指定的Series。 DataFrame当中有两种方法获取指定的列,我们可以通过.加列名的方式或者也可以通过dict查找元素的方式来查询: ?...由于在DataFrame当中每一列单独一个类型,而转化成numpy的数组之后所有数据共享类型。那么pandas会为所有的列找一个通用类型,这就是为什么经常会得到一个object类型的原因。