在一个文件夹内,有大量的Excel表格文件(以.csv格式文件为例),其中每一个文件都有着类似如下图所示的数据特征;我们希望,对于下图中紫色框内的列,其中的数据部分(每一列都有一个列名,这个列名不算数据部分...此外,很显然在每一个文件的操作结束后,加以处理的列的数据部分的最后一行肯定是没有数据的,因此在合并全部操作后的文件之前,还希望将每一个操作后文件的最后一行删除。 ...首先,我们通过result_df = pd.DataFrame()创建一个空的DataFrame,用于保存处理后的数据。...接下来,我们通过if len(df):判断是否DataFrame不为空,如果是的话就删除DataFrame中的最后一行数据;随后,将处理后的DataFrame连接到result_df中。 ...最后,我们通过result_df.to_csv()函数,将最终处理后的DataFrame保存为一个新的Excel表格文件,从而完成我们的需求。 至此,大功告成。
对于一个给定的DataFrame,可以使用 shift() 函数前移(前面的缺失值用NaN补全)或后移(后面的缺失值用NaN补全)来采集定长切片保存至列中。...此时时间序列中的变量需要整体前移或者后移来创建多元的输入序列和输出序列。我们稍后将讨论这个问题。...该函数返回一个值: return:为监督学习重组得到的Pandas DataFrame序列。 新的数据集将被构造为DataFrame,每一列根据变量的编号以及该列左移或右移的步长来命名。...这允许你从给定的单变量或多变量序列上设定不同的时移步长来尝试解决当前的时间序列问题。 DataFrame返回之后,你就可以根据需要将其分割为 X 和 y 两部分以供监督学习使用。...同样,根据问题的实际情况可以将这些列任意拆分为 X 和 Y 部分,比方说 var1 和 var2 均为观测值但是只有 var2 需要被预测。
小技巧2:使用 replace 和正则清洗数据 Pandas 的强项在于数据分析,自然就少不了数据清洗。 一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。...我们的目标:清洗掉 RMB,$ 符号,转化这一列为浮点型。...apple 价格,并且 apple, banana, orange,这三列都是一种水果,那么如何把这三列合并为一列?...,对应的原 DataFrame 是宽 DF....int_number date 0201935020193502019-12-16 1201936520193652019-12-31 22020120200012020-01-01 小技巧5:如何将分类中出现次数较少的值归为
函数将根据给定的数据集索引或列组合两个数据集。...pd.merge(customer, order) 默认情况下,merge函数是这样工作的: 将按列合并,并尝试从两个数据集中找到公共列,使用来自两个DataFrame(内连接)的列值之间的交集。...列和索引合并 在上面合并的数据集中,merge函数在cust_id列上连接两个数据集,因为它是唯一的公共列。我们也可以指定要在两个数据集上连接的列名。...在Inner Join中,根据键之间的交集选择行。匹配在两个键列或索引中找到的相同值。...这是因为它将根据键的距离合并键,而未排序的DataFrame将抛出错误消息。 使用merge_asof类似于其他的合并操作,需要传递想要合并的DataFrame及其键名称。
Pandas 库将外部数据转换为 DataFrame 数据格式,处理完成后再存储到相应的外部文件中。 1、读 / 写文本文件 文本文件是一种由若干行字符构成的计算机文件,它是一种典型的顺序文件。...接收int或sequence,表示将某行数据作为列名,默认为infer,表示自动识别 names 接收int、sequence或者False,表示索引列的位置,取值为sequence则代表多重索引,默认为...thresh 阈值设定,当行列中非空值的数量少于给定的值就将该行丢弃 subset 表示进行去重的列/行,如:subset=[ ’a’ ,’d’],即丢弃子列 a d 中含有缺失值的行 inplace...df.dropna(axis='columns') 更精确的缩小删除范围,需要使用how或thresh(阈值)参数。 df[3] = np.nan df 只有全为空值的列才会被删除。...df.dropna(axis='columns', how='all') 通过thresh参数,那些非缺失值的个数大于等于阈值的行或列将保留。
iloc是根据整数标签进行选择,frame[:1,[1,2]]选择第一行的第一、二列。...索引选项 类型 描述 df[val] 从DataFrame中选择单列或多列或行(整数表示选择行) df.loc[val] 根据标签选择单行或多行 df.loc[:, val] 根据标签选择单列或多列...df.loc[val1, val2] 根据标签同时选中行和列的一部分 df.iloc[where] 根据整数选择一行或多行 df.iloc[:, where] 根据整数选择一列或多列 df.iloc[where_i...通过标签选择行和列 get_value, set_value方法 根据行和列的标签设置单个值 灵活运用前9个方法对后续批量数据清洗和处理有很大的帮助。...', 'Colorado', 'Utah', 'New York']) print(frame) np.abs(frame) #使用了np的abs(绝对值)方法 另外一个常用操作是将函数应用到一行或一列的一维数组上
前言 本文主要介绍三个对列转换的小操作: split 按分隔符将列分割成多个列 astype 转换列为其它类型 将对应列上的字符转换为大写或小写 创建 DataFrame 首先,导入 Pandas 模块...,通过传入字典的方式创建 DataFrame。...split 按分隔符将列分割成多个列 现在我们想要将 name 列划分成两个列,其中一个列为 first_name,另外一个列为 last_name。..." n = -1,则会返回 I, am, KangChen. n = 1,则会返回 I, am KangChen. n = 2,则会但会 I, am, KangChen. expand = True 将分割的字符串转换为单独的列...astype 转换列为其它类型 我们可以使用 astype() 将 age 列转换为字符串类型,将 salary 列转换为浮点型。
在多列上对 DataFrame 进行排序 按升序按多列排序 更改列排序顺序 按降序按多列排序 按具有不同排序顺序的多列排序 根据索引对 DataFrame 进行排序 按升序按索引排序 按索引降序排序 探索高级索引排序概念...在单列上对 DataFrame 进行排序 要根据单列中的值对 DataFrame 进行排序,您将使用.sort_values(). 默认情况下,这将返回一个按升序排序的新 DataFrame。...因此,如果您计划执行多种排序,则必须使用稳定的排序算法。 在多列上对 DataFrame 进行排序 在数据分析中,通常希望根据多列的值对数据进行排序。想象一下,您有一个包含人们名字和姓氏的数据集。...先按姓然后按名字排序是有意义的,这样姓氏相同的人会根据他们的名字按字母顺序排列。 在第一个示例中,您在名为 的单个列上对 DataFrame 进行了排序city08。...下一个示例将解释如何指定排序顺序以及为什么注意您使用的列名列表很重要。 按升序按多列排序 要在多个列上对 DataFrame 进行排序,您必须提供一个列名称列表。
/table.csv')df.head()#读取txt文件,直接读取可能会出现数据都挤在一列上df_txt = pd.read_table('./data....根据类型选择列 df.select_dtypes(include=['number'])df.select_dtypes(include=['float']) Series和DataFrame相互转换...DataFrame转换为Series 就是取某一列的操作 s = df.mean()s.name = 'to_DataFrame' 2....需要注意的是:需要在具体列上操作,本身DataFrame并没有这两个方法 df['Physics'].unique()df['Physics'].nunique() 3. count & value_counts...对于Series,它可以迭代每一列的值(行)操作;对于DataFrame,它可以迭代每一个列操作。 # 遍历Math列中的所有值,添加!
拿 pandas 举例子,当创建了一个 DataFrame 后,无论行和列上数据都是有顺序的,因此,在行和列上都可以使用位置来选择数据。...在每列上,这个类型是可选的,可以在运行时推断。从行上看,可以把 DataFrame 看做行标签到行的映射,且行之间保证顺序;从列上看,可以看做列类型到列标签到列的映射,同样,列间同样保证顺序。...图里的示例中,一个行数 380、列数 370 的 DataFrame,被 Mars 分成 3x3 一共 9 个 chunk,根据计算在 CPU 还是 NVIDIA GPU 上进行,用 pandas DataFrame...可以看到,Mars 既会在行上,也会在列上进行分割,这种在行上和列上的对等性,让 DataFrame 的矩阵本质能得以发挥。...在单机真正执行时,根据初始数据的位置,Mars 会自动把数据分散到多核或者多卡执行;对于分布式,会将计算分散到多台机器执行。 Mars DataFrame 保留了行标签、列标签和类型的概念。
,表明各元素是否为缺失值 df.isnull() 删除缺失值所在的行或列: # 删除所有含有缺失值的行 df.dropna() # 删除所有含有缺失值的列 df.dropna(axis=1) 用指定值填充缺失值...: # 将缺失值使用 0 填充 df.fillna(0) 数据去重 对 DataFrame 去重: # 根据所有列值的重复性进行去重 df.drop_duplicates() # 根据指定列值的重复性进行去重...) 数据合并 横向(按列)合并 DataFrame: # 创建一个新的 DataFrame other_data = {'name': ['Tom', 'Jerry', 'Lucy', 'Amy'],...'score': [80, 90, 85, 95]} other_df = pd.DataFrame(other_data) # 将两个 DataFrame 在列上合并 pd.concat...) # 将两个 DataFrame 在行上合并 pd.concat([df, other_df], axis=0) 数据透视表 创建数据透视表: # 统计不同性别和年龄的人数,以 'gender' 为行
再以上面那个DataFrame为例,我们可以根据行或列上的级别来进行求和: In [27]: frame.sum(level='key2') Out[27]: state Ohio Colorado...使用DataFrame的列进行索引 人们经常想要将DataFrame的一个或多个列当做行索引来用,或者可能希望将行索引变成DataFrame的列。...重塑层次化索引 层次化索引为DataFrame数据的重排任务提供了一种具有良好一致性的方式。主要功能有二: stack:将数据的列“旋转”为行。 unstack:将数据的行“旋转”为列。...它不是将一列转换到多个新的DataFrame,而是合并多个列成为一个,产生一个比输入长的DataFrame。...,用作行标签,我们可以使用reset_index将数据移回列: In [163]: reshaped.reset_index() Out[163]: variable key A B C 0
为了说明这个模型的使用,让我们来进一步理解上面的快速示例: 最开始的 DataFrame lines 为输入表 最后的 DataFrame wordCounts 为结果表 在流上执行的查询将 DataFrame...你可以通过指定事件时间列来定义一个 query 的 watermark 和 late threshold(延迟时间阈值)。...换句话说,在延迟时间阈值范围内的延迟数据会被聚合,但超过该阈值的数据会被丢弃。让我们以一个例子来理解这一点。...watermark,并且将 10 分钟定义为允许数据延迟的阈值。...必须调用在用来聚合的时间列上。
利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对 Series 的重新索引操作 重新索引指的是根据index...针对 DataFrame 的重新索引操作 ? 二、drop() 方法:丢弃数据 针对 Series ? 针对 DataFrame 不仅可以删除行,还可以删除列: ?...DataFrame 中的 ix 操作: ? 四、算术运算和数据对齐 针对 Series 将2个对象相加时,具有重叠索引的索引值会相加处理;不重叠的索引则取并集,值为 NA: ?...针对 DataFrame 对齐操作会同时发生在行和列上,把2个对象相加会得到一个新的对象,其索引为原来2个对象的索引的并集: ?...和Series 对象一样,不重叠的索引会取并集,值为 NA;如果不想这样,试试使用 add() 方法进行数据填充: ? 五、函数应用和映射 将一个 lambda 表达式应用到每列数据里: ?
与 using 的不同之处.sort_values()在于您是根据其行索引或列名称对 DataFrame 进行排序,而不是根据这些行或列中的值: DataFrame 的行索引在上图中以蓝色标出。...在单列上对 DataFrame 进行排序 要根据单列中的值对 DataFrame 进行排序,您将使用.sort_values(). 默认情况下,这将返回一个按升序排序的新 DataFrame。...因此,如果您计划执行多种排序,则必须使用稳定的排序算法。 在多列上对 DataFrame 进行排序 在数据分析中,通常希望根据多列的值对数据进行排序。想象一下,您有一个包含人们名字和姓氏的数据集。...先按姓然后按名字排序是有意义的,这样姓氏相同的人会根据他们的名字按字母顺序排列。 在第一个示例中,您在名为 的单个列上对 DataFrame 进行了排序city08。...下一个示例将解释如何指定排序顺序以及为什么注意您使用的列名列表很重要。 按升序按多列排序 要在多个列上对 DataFrame 进行排序,您必须提供一个列名称列表。
转自:志学python 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对 Series 的重新索引操作 重新索引指的是根据...针对 DataFrame 的重新索引操作 ? 二、drop() 方法:丢弃数据 针对 Series ? 针对 DataFrame 不仅可以删除行,还可以删除列: ?...DataFrame 中的 ix 操作: ? 四、算术运算和数据对齐 针对 Series 将2个对象相加时,具有重叠索引的索引值会相加处理;不重叠的索引则取并集,值为 NA: ?...针对 DataFrame 对齐操作会同时发生在行和列上,把2个对象相加会得到一个新的对象,其索引为原来2个对象的索引的并集: ?...和Series 对象一样,不重叠的索引会取并集,值为 NA;如果不想这样,试试使用 add() 方法进行数据填充: ? 五、函数应用和映射 将一个 lambda 表达式应用到每列数据里: ?
首先,将数据集导入pandas DataFrame - df import pandas as pddf = pd.read_csv("Dummy_Sales_Data_v1.csv")df.head(...在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas Query()还可以在查询表达式中使用数学计算。...OrderDate.dt.day >=15") DT很好用并且可以在同一列上结合了多个条件,但表达式似乎太长了。
首先,将数据集导入pandas DataFrame - df import pandas as pd df = pd.read_csv("Dummy_Sales_Data_v1.csv") df.head...在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。...OrderDate.dt.day >=15") DT很好用并且可以在同一列上结合了多个条件,但表达式似乎太长了。
将DataFrame划分为两个随机的子集 假设你想要将一个DataFrame划分为两部分,随机地将75%的行给一个DataFrame,剩下的25%的行给另一个DataFrame。...或者你想要舍弃那么缺失值占比超过10%的列,你可以给dropna()设置一个阈值: ? len(ufo)返回总行数,我们将它乘以0.9,以告诉pandas保留那些至少90%的值不是缺失值的列。...通过使用concat()函数,我们可以将原来的DataFrame和新的DataFrame组合起来: ?...我们可以通过链式调用函数来应用更多的格式化: ? 我们现在隐藏了索引,将Close列中的最小值高亮成红色,将Close列中的最大值高亮成浅绿色。 这里有另一个DataFrame格式化的例子: ?...Volume列现在有一个渐变的背景色,你可以轻松地识别出大的和小的数值。 最后一个例子: ? 现在,Volumn列上有一个条形图,DataFrame上有一个标题。
领取专属 10元无门槛券
手把手带您无忧上云