来源:马哥教育链接:https://mp.weixin.qq.com/s/UupllldADYE0sHbRs0uouQXfS文件系统是SGI开发的高级日志文件系统,XFS极具伸缩性,非常健壮。所幸的是SGI将其移植到了Linux系统中。在linux环境下。目前版本可用的最新XFS文件系统的为1.2版本,可以很好地工作在2.4核心下。XFS文件系统简介主要特性包括以下几点:数据完全性采用XFS文件系统,当意想不到的宕机发生后,首先,由于文件系统开启了日志功能,所以你磁盘上的文件不再会意外宕机而遭到破坏了。不论目前文件系统上存储的文件与数据有多少,文件系统都可以根据所记录的日志在很短的时间内迅速恢复磁盘文件内容。传输特性XFS文件系统采用优化算法,日志记录对整体文件操作影响非常小。XFS查询与分配存储空间非常快。xfs文件系统能连续提供快速的反应时间。笔者曾经对XFS、JFS、Ext3、ReiserFS文件系统进行过测试,XFS文件文件系统的性能表现相当出众。可扩展性XFS 是一个全64-bit的文件系统,它可以支持上百万T字节的存储空间。对特大文件及小尺寸文件的支持都表现出众,支持特大数量的目录。最大可支持的文件大小为263 = 9 x 1018 = 9 exabytes,最大文件系统尺寸为18 exabytes。XFS使用高的表结构(B+树),保证了文件系统可以快速搜索与快速空间分配。XFS能够持续提供高速操作,文件系统的性能不受目录中目录及文件数量的限制。传输带宽XFS 能以接近裸设备I/O的性能存储数据。在单个文件系统的测试中,其吞吐量最高可达7GB每秒,对单个文件的读写操作,其吞吐量可达4GB每秒。XFS文件系统的使用下载与编译内核下载相应版本的内核补丁,解压补丁软件包,对系统核心打补丁下载地址:ftp://oss.sgi.com/projects/xfs/d … .4.18-all.patch.bz2对核心打补丁,下载解压后,得到一个文件:xfs-1.1-2.4.18-all.patch文件。对核心进行修补如下:# cd /usr/src/linux # patch -p1 < /path/to/xfs-1.1-2.4.18-all.patch修补工作完成后,下一步要进行的工作是编译核心,将XFS编译进Linux核心可中。首先运行以下命令,选择核心支持XFS文件系统:#make menuconfig在“文件系统“菜单中选择:<*> SGI XFS filesystem support ##说明:将XFS文件系统的支持编译进核心或 SGI XFS filesystem support ##说明:以动态加载模块的方式支持XFS文件系统另外还有两个选择:Enable XFS DMAPI ##说明:对磁盘管理的API,存储管理应用程序使用 Enable XFS Quota ##说明:支持配合Quota对用户使用磁盘空间大小管理完成以上工作后,退出并保存核心选择配置之后,然后编译内核,安装核心:#make bzImage #make module #make module_install #make install如果你对以上复杂繁琐的工作没有耐心或没有把握,那么可以直接从SGI的站点上下载已经打好补丁的核心,其版本为2.4.18。它是一个rpm软件包,你只要简单地安装即可。SGI提交的核心有两种,分别供smp及单处理器的机器使用。创建XFS文件系统完成对核心的编译后,还应下载与之配套的XFSprogs工具软件包,也即mkfs.xfs工具。不然我们无法完成对分区的格式化:即无法将一个分区格式化成XFS文件系统的格式。要下载的软件包名称:xfsprogs-2.0.3。将所下载的XFSProgs工具解压,安装,mkfs.xfs自动安装在/sbin目录下。#tar –xvf xfsprogs-2.0.3.src.tar.gz #cd xfsprogs-2.0.3src #./configure #make #make install使用mkfs.xfs格式化磁盘为xfs文件系统,方法如下:# /sbin/mkfs.xfs /dev/sda6 #说明:将分区格式化为xfs文件系统,以下为显示内容: meta-data=/dev/sda6 isize=256 agcount=8, agsize=128017 blks data = bsize=4096 blocks=1024135, imaxpct=25 = sunit=0 swidth=0 blks, unwritten=0 naming =version 2 bsize=4096 log =internal log bsize=4096 blocks=1200 realtime =none
XfS文件系统是SGI开发的高级日志文件系统,XFS极具伸缩性,非常健壮。所幸的是SGI将其移植到了Linux系统中。在linux环境下。目前版本可用的最新XFS文件系统的为1.2版本,可以很好地工作在2.4核心下。
通常在制作云上使用的虚拟机时,如果不进行任何干预,安装出来的虚拟机默认是带有swap分区的,同时采用lvm来管理磁盘,通过这种方式制作出来的虚拟机镜像,直接在云上使用会有很多问题,其中一个就是根分区无法实现自动扩容,只能通过手工操作完成。而且在openstack中,swap分区通常是由一个单独的swap磁盘来提供,而不应该是做镜像的时候提供。
LVM是逻辑盘卷管理(LogicalVolumeManager)的简称,在Linux环境下对磁盘分区进行管理的一种机制,LVM是建立在硬盘和分区之上的一个逻辑层,来提高磁盘分区管理的灵活性。通过LVM系统管理员可以轻松管理磁盘分区,扩容文件系统,LVM将若干个磁盘分区连接为一个整块的卷(volumegroup),形成一个存储池。管理员可以在卷组上随意创建逻辑卷组(logicalvolumes),并进一步在逻辑卷组上创建文件系统。
我们知道,Linux系统中我们经常将一个块设备上的文件系统挂载到某个目录下才能访问这个文件系统下的文件,但是你有没有思考过:为什么块设备挂载之后才能访问文件?挂载文件系统Linux内核到底为我们做了哪些事情?是否可以不将文件系统挂载到具体的目录下也能访问?下面,本文将详细讲解Linxu系统中,文件系统挂载的奥秘。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 1 HDFS前言 设计思想 分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析; 在大数据系统中作用: 为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务 重点概念: 文件切块,副本存放,元数据 重要特性如下: ⑴ HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( d
今天讲一下文件系统,遇见过单个最大文件的问题,所以将此问题记录下来,希望对大家有用。
伙伴们,开始本文之前给大家说个事情:由于最近坚持更新公众号文章,向大家推送学习内容,居然收到了微信客服的致电和来信,给开通了留言功能。有点小小的意外和开森!以后发布的文章大家就可以随时留言,希望大家多多留言提出宝贵意见哦!!!
在上一篇云硬盘性能分析的教程中,为大家介绍了如何评测云硬盘的读写性能。但是,我们使用硬盘,从来不是直接读写裸设备,而是通过文件系统来管理和访问硬盘上地文件。不少朋友询问,文件系统该如何对比,又该如何选择呢?
由于Hadoop擅长存储大文件,因为大文件的元数据信息比较少,如果Hadoop集群当中有大量的小文件,那么每个小文件都需要维护一份元数据信息,会大大的增加集群管理元数据的内存压力,所以在实际工作当中,如果有必要一定要将小文件合并成大文件进行一起处理。
备忘 EXT3 http://zh.wikipedia.org/zh-cn/Ext3 ext3,第三扩展文件系统,是一个日志文件系统,常用于Linux操作系统。它是很多Linux发行版的默认文件系统。Stephen Tweedie在1999年2月的内核邮件列表[2]中,最早显示了他使用扩展的ext2,该文件系统从2.4.15版本的内核开始,合并到内核主线中[3]。 大小限制 ext3有一个相对较小的对于单个文件和整个文件系统的最大尺寸。这些限制依赖于文件系统的块大小;下面的表格总结了这些限制。 块尺寸 最大文件尺寸 最大文件系统尺寸
这个项目是我2011年在杭州某家互联网公司实习时写的项目,当时坐下来感觉还不错,能够支持上百台服务器的集群需求,并且也支持简单的负载均衡策略,接下来,我来简单地介绍下JDistFS的实现目标,架构以及提供给上层用户使用的接口说明
以下测试都是在没有优化或修改内核的前提下测试的结果 1. 测试目的:ext3文件系统下filename最大字符长度 测试平台:RHEL5U3_x64 测试过程: LENTH=`for i in {1..255};do for x in a;do echo -n $x;done;done` touch $LENTH 当增加到256时,touch报错,File name too long linux系统下ext3文件系统内给文件/目录命名,最长只能支持127个中文字符,英文则可以支持255个字符 2. 测试目的:ext3文件系统下一级子目录的个数限制 测试平台:RHEL5U3_x64 测试过程: [root@fileserver maxdir]# for i in {1..32000};do mkdir $i;done mkdir: cannot create directory `31999': Too many links mkdir: cannot create directory `32000': Too many links ext3文件系统一级子目录的个数为31998(个)。 Linux为了cpu的搜索效率而规定的,要想改变数目大概要重新编译内核. 3. 测试目的:ext3文件系统下单个目录里的最大文件数 测试平台: RHEL5U3_x64 测试过程: 单个目录下的最大文件数似乎没什么特别限制,也是受限于所在文件系统的inode数限制: df -i或者使用tune2fs -l /dev/sdaX或者dumpe2fs -h /dev/sdaX查看可用inode数,后两个命令 输出结果是一样的,但是跟df所得出的可用inode数会有些误差,至今不明白什么原因。 网上常用两种解决办法: 1) 重新mkfs,ext3默认block大小4096 Bytes,block设置小一些inode数设置大一些 2) 使用loopback文件系统临时解决: 在/usr中(也可以在别处)创建一个大文件,然后做成loopback文件系统,将原来的文件移到这个 文件系统中,并将它mount到/usr下合适的位置。这样可以大大减少你/usr中的文件数目。但是系统 性能会有点损失。 4. 测试目的: 打开文件数限制(文件句柄、文件描述符) 测试平台: RHEL5U3_x64 ulimit -n 65535设置,或者/etc/security/limit.conf里设置用户打开文件数、进程数、CPU等
Node.js 提供一组类似 UNIX(POSIX)标准的文件操作API。 Node 导入文件系统模块(fs)语法如下所示:
以存储512M文件为例,展示了ext4_extent、ext4_extent_idx、ext4_extent_header之间的关系
windows下全然限定文件名称必须少于260个字符,文件夹名必须小于248个字符。
Linux:存在几十个文件系统类型:ext2,ext3,ext4,xfs,brtfs,zfs(man 5 fs可以取得全部文件系统的介绍)
会生成一个1000M的test文件,文件内容为全0(因从/dev/zero中读取,/dev/zero为0源)。
宏观上文件系统在kernel的形态 文件系统运作流程按照:vfs->磁盘缓存->实际磁盘文件系统->通用块设备层->io调度层->块设备驱动层->磁盘。具体流程的详细展现如下如 如何理解文件系统中的数据结构? linux中文件系统还有几种核心数据结构分别是super_block、inode、dentry、file.super_block是磁盘文件系统(xfs/ext4)的内存呈现,inode是linux中文件唯一呈现,也是文件本身,存储了文件的元数据。dentry是文件本身的代表,存储了文件的名称和i
但 Java 在后期版本中引入了 java.nio.file 库来提高 Java 对文件操作的能力。还增加的流的功能,似乎使得文件变成更好用了。所以本章,我们就来主要介绍 java.nio.file 中常用的类和模块,大致如下:
在大文件系统下, 单一inode表将会变得非常臃肿, 难以管理, 因此 ext2采用多个区块群组(group block), 每个区块群组均具有其 superblock, inode, block
当虚拟机服务器运行Docker久了后,发现Docker的文件越来越大,某天发现此台机上的数据库访问不了了,再重启数据库等日志,提示空间不足,查看磁盘空间: root分区满载啊,前段时间还有不少
在 Linux 系统中,有时候我们需要查找并识别占用大量磁盘空间的文件。这些大文件可能导致磁盘空间不足或性能下降。本文将详细介绍在 Linux 中使用不同的命令和工具来查找大文件的方法。
背景:今天被人问到一个10G的超大CSV如何最快速度读取,并插入到数据库中。一般读取文件都是单线程一直往下读,但是如果文件特别大的情况下就会很慢。如何快速读取?脑海里面"多线程"一下子就浮出水面了,想要快速读取文件,肯定得多线程一起读取。那问题来了,一个文件怎么样进行多线程读取,首先得知道每个线程要负责读取的位置,才可以多线程完整的读取一行的数据。
我们知道如要要从磁盘取数据,需要告诉控制器从哪取,取多长等信息,如果这步由应用来做,那实在太麻烦。所以操作系统提供了一个中间层,它管理本地的磁盘存储资源、提供文件到存储位置的映射,并抽象出一套文件访问接口供用户使用。对用户来说只需记住文件名和路径,其他的与磁盘块打交道的事就交给这个中间层来做,这个中间层即为文件系统。
测试人员最常见和繁琐的任务之一就是清理环境,比如防止磁盘空间出现不足。下面是我收集的一些常用的 Linux 文件系统相关命令。
根据IDC在2018年底的预测显示,由于大数据、AI、物联网、5G等因素的驱动,全球的数据量在2025年将高达175ZB(1ZB=1024EB,1EB=1024PB)。在中国市场,由于AI技术在安防等领域的大规模落地与应用,IDC预计,中国将在2025年成为拥有数据量最大的地区,甚至超过整个EMEA(欧洲+中东+非洲),其中绝大部分数据是非结构化数据。
Hadoop是一个分布式系基础框架,它允许使用简单的编程模型跨大型计算机的大型数据集进行分布式处理.
文件管理系统中,索引文件结构是一种常见的文件组织方式,它通过索引来实现文件内容的快速访问。在索引文件结构中,主要涉及到几个关键概念:索引结点、物理磁盘块、直接索引、一级间接索引、二级间接索引、三级间接索引。
调整ext2\ext3\ext4文件系统的大小,它可以放大或者缩小没有挂载的文件系统的大小。如果文件系统已经挂载,它可以扩大文件系统的大小,前提是内核支持在线调整大小。
来源:CU技术社区 ID:ChinaUnix2013 作为一名合格的 Linux 运维工程师,一定要有一套清晰、明确的解决故障思路,当问题出现时,才能迅速定位、解决问题,这里给出一个处理问题的一般思路: 重视报错提示信息:每个错误的出现,都是给出错误提示信息,一般情况下这个提示基本定位了问题的所在,因此一定要重视这个报错信息,如果对这些错误信息视而不见,问题永远得不到解决。 查阅日志文件:有时候报错信息只是给出了问题的表面现象,要想更深入的了解问题,必须查看相应的日志文件,而日志文件又分为系统日志文件(/
作为一名合格的 Linux 运维工程师,一定要有一套清晰、明确的解决故障思路,当问题出现时,才能迅速定位、解决问题,这里给出一个处理问题的一般思路:
借助 ext4 文件系统的 打洞 功能,可以实现一个消息队列 https://gist.github.com/CAFxX/571a1558db9a7b393579
摘要
最近忙着给YOUZAN的数据库服务器升级系统版本,从centos6 升级到centos7。centos/redhat 7 默认将文件系统设置为xfs。咨询了很多DBA朋友,他们已经升级到7 并且使用xfs很久。于是我们也随大流打算使用xfs文件系统。
应对文件存储服务,传统做法是在服务器上部署文件服务比如FTP。但是随着数据变多,会遇到存储瓶颈。此时,本能的操作反应是:内存不够加内存,磁盘不够加磁盘—单机纵向扩展。但是单机能够扩展的内存磁盘是有上限的,不能无限制下去。
2020年的春节,想必大家都印象深刻,除了新冠肺炎疫情,就是春晚各大APP的红包大战,让不少用户“薅”到了羊毛。
对于一个企业大数据应用来说,搞定了大数据存储基本上就解决了大数据应用最重要的问题。Google 三驾马车的第一驾是GFS,Hadoop最先开始设计的就是HDFS,可见分布式存储的重要性,整个大数据生态计算框架多种多样,但是大数据的存储却没有太大的变化,HDFS依旧是众多分布式计算的基础。当然HDFS也有许多缺点,一些对象存储等技术的出现给HDFS的地位带来了挑战,但是HDFS目前还是最重要的大数据存储技术,新的计算框架想要获得广泛应用依旧需要支持HDFS。大数据数据量大、类型多种多样、快速的增长等特性,那么HDFS是如何去解决大数据存储、高可用访问的了?
hdfs文件系统主要设计为了存储大文件的文件系统;如果有个TB级别的文件,我们该怎么存储呢?分布式文件系统未出现的时候,一个文件只能存储在个服务器上,可想而知,单个服务器根本就存储不了这么大的文件;退而求其次,就算一个服务器可以存储这么大的文件,你如果想打开这个文件,效率会高吗
大多数现代Linux发行版默认为ext 4文件系统,就像以前的Linux发行版默认为ext3、ext2,以及-如果追溯到足够远的话-ext。 如果您是Linux新手或者是文件系统新手,您可能会想知道ext 4给表带来了什么,而ext3却没有。考虑到诸如btrfs、XFS和ZFS等备用文件系统的新闻报道,您可能还想知道ext4是否还在积极开发中。 我们不能在一篇文章中涵盖所有关于文件系统的内容,但是我们将尝试让您了解Linux的默认文件系统的历史、它所处的位置以及所期待的内容。 我大量地引用了各种ext文件系统文章以及我在编写本概览时的经验。
在Linux下查看磁盘空间使用情况,最常使用的就是du和df了。然而两者还是有很大区别的,有时候其输出结果甚至非常悬殊。 1. 如何记忆这两个命令 du-Disk Usage df-Disk Free 2. df 和du 的工作原理 2.1 du的工作原理 du命令会对待统计文件逐个调用fstat这个系统调用,获取文件大小。它的数据是基于文件获取的,所以有很大的灵活性,不一定非要针对一个分区,可以跨越多个分区操作。如果针对的目录中文件很多,du速度就会很慢了。 2.2 df的工作原理 df命令使用的事s
Hadoop快速入门——第二章、分布式集群 HDFS概述: 在 2002 年, Google 发表的论文 GFS 中提到希望构建一个能够运行于商业硬件集群上的以流式数据访问形式存储超大文件的文件系统, HDFS 就是为了实现这一目标 HDFS 的设计特点如下 超大文件 流式数据访问 商用硬件 不能处理低时间延迟的数据访问 不能存放大量小文件 无法高效实现多用户写入或者任意修改文件 在 HDFS 中有一些特殊的概念,需要特别重点的理解 数据块 : 在普通的文件系统中
ZFS的设计与开发由Sun公司的Jeff Bonwick所领导的一支团队完成。最早宣布于2004年9月14日,于2005年10月31日并入了Solaris开发的主干源代码。并在2005年11月16日作为OpenSolaris build 27的一部分发布。Sun在OpenSolaris社区开张1年后的2006年六月,将ZFS集成进了Solaris 10 6/06版本更新。 ZFS的命名来源发想于"ZettabyteFile System"的首字母缩写。但 ZFS 本身并不具备任何的缩写意涵,只是作者想阐述做为一个具备高扩充容量文件系统且还有支持许多延伸功能的一个产品。
10.2 访问方法 10.2.1 顺序访问 最为简单的访问方式是顺序访问。文件信息按顺序,一个记录接着一个记录地加以处理。这种访问模式最为常用,例如,编辑器和编译器通常按这种方式访问文件。 基于磁带模型 10.2.2 直接访问 另一方式是直接访问(或相对访问)。文件由固定长度的逻辑记录组成,以允许程序按任意顺序进行快速读和写。直接访问方式是基于文件的磁盘模型,这是因为磁盘允许对任意文件块进行随机读和写。对直接访问,文件可作为块或记录的编号序列。因此,可先读取块14,再读块53
**分布式存储:**通过网络使用企业中的每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在企业的各个角落。
因为在前面几期的分享中,大家看到的更多是HDFS的底层原理,内部结构,并没有谈到其自身优势和劣势的一个比较!因此,本次小菌为大家带来的就是HDFS的特性以及缺点分析。
本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!
文章目录 HDFS的特性 HDFS的缺点 HDFS的特性 海量数据存储 :HDFS 可横向扩展,其存储文件可以支持PB级别数据 高容错性 :节点丢失,系统依然可用,数据保存多个副本,副本丢失后自动恢复。可建构在廉价(与小型机大型机比)的机器上,实现线性扩展(随着节点数量的增加,集群的存储能力增加) 大文件存储 :DFS采用数据块的方式存储数据,将一个大文件切分成多个小文件,分布存储 HDFS的缺点 不能做到低延迟数据访问:HDFS 针对一次性读取大量数据继续了优化,牺牲了延迟性。 不适合大量的小文件存储:
领取专属 10元无门槛券
手把手带您无忧上云