问题导读 1.通过什么途径,可以查看与spark兼容的组件版本? 2.如何获取pom文件? 3.pom文件中包含了哪些信息? 4.spark编译通过什么参数可以指定hadoop版本? 当我们安装
idea中使用scala运行spark出现: Exception in thread "main" java.lang.NoClassDefFoundError: scala/collection/GenTraversableOnce$class 查看build.sbt: name := "ScalaSBT" version := "1.0" scalaVersion := "2.11.8" libraryDependencies += "org.apache.spark" % "spark-core
问题导读 1.spark集群能否单独运行? 2.如何在spark中指定想编译的hadoop版本? 3.构建的时候,版本选择需要注意什么? 上一篇 如何查看spark与hadoop、kafka、S
Fayson在前面的文章中介绍过什么是Spark Thrift,Spark Thrift的缺陷,以及Spark Thrift在CDH5中的使用情况,参考《0643-Spark SQL Thrift简介》。
在CDH集群中spark1和Spark2版本可以共存,为了更好的体验及使用Spark新版本的API或修改已知旧版本的bug,现需要将CDH集群中Spark2的版本升级至Spark2.2最新,本篇文章主要介绍如何通过Cloudera Manager将Spark2.1版本升级至Spark2.2。
问题导读 1.spark下载方式有哪些? 2.spark可以运行在哪些系统? 3.spark支持哪些语言? 4.如何运行spark各种语言版本例子? 概述 spark是一个快速通用的计算系统集群。它提供Java高级APIs,Scala,Python和R和一个支持通用执行graphs优化引擎。他还支持一组丰富的高级工具包括spark sql和结构化数据处理,mllib机器学习, GraphX图像处理和Spark Streaming. 下载 下载链接:http://spark.apache
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github:https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 在前面的文章Fayson介绍了《如何在CDH集群中安装Hive2.3.3》,本篇文章主要介绍Hive2.2.0服务如何与CDH集群中的Spark1.6集成,Hive on Spark对于Hive和Spark的版本都有严格的要求,Fayson本文使用的是Hive2.2.0版本做测试,具体版本的
在CDH集群中提交Spark作业,大家也都知道Spark的Driver和Executor之间通讯端口是随机的,Spark会随选择1024和65535(含)之间的端口,因此在集群之间不建议启用防火墙。在前面Fayson介绍了《如何指定Spark2作业中Driver和Executor使用指定范围内端口》,本篇文章Fayson主要介绍如何指定Spark1作业中Driver和Executor使用指定范围内的端口进行通讯。
在前面的文章Fayson介绍了在Kerberos环境下《Spark2Streaming读Kerberos环境的Kafka并写数据到Kudu》,本篇文章Fayson主要介绍如何使用Spark2 Streaming访问非Kerberos环境的Kafka并将接收到的数据写入Kudu。
本文介绍了如何将Spark应用(app jar)发布到Hadoop集群中,并提供了相关步骤、注意事项和示例。
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- 在前面的文章Fayson介绍了《如何在CDH中启用Spark Thrift》,《如何在Kerberos环境下的CDH集群部署Spark1.6 Thrift及spark-sql客户端》,《如何在Kerberos环境下的CDH集群部署Spark2.1的Thrift及spark-sql
这两天在测试环境提交 Spark Streaming 任务时,遇到了一个 JDK 版本问题导致 job 一直提交失败。
Apache Spark社区刚刚发布了1.5版本,大家一定想知道这个版本的主要变化,这篇文章告诉你答案。 DataFrame执行后端优化(Tungsten第一阶段) DataFrame可以说是整个Spark项目最核心的部分,在1.5这个开发周期内最大的变化就是Tungsten项目的第一阶段已经完成。主要的变化是由Spark自己来管理内存而不是使用JVM,这样可以避免JVM GC带来的性能损失。内存中的Java对象被存储成Spark自己的二进制格式,计算直接发生在二进制格式上,省去了序列化和反序列化时间。同
本篇主要记录一下Spark 集群环境搭建过程以及在搭建过程中所遇到的问题及解决方案
1.文档编写目的 在早些时间Cloudera已正式的发布CDS3《0814-基于CDP7.1.3的Spark3.0正式发布》。在CDP私有云基础上,Spark3服务与现有的Spark2服务共存,两个服务的配置不冲突,可以共用共一个Yarn服务。Spark History服务的端口是Saprk2的18088和Spark3的18089。CDS3.2在支持GPU的同时,也引入了RAPIDS Accelerator for Apache Spark来加速CDP集群上Apache Spark3的性能。本篇文章主要介绍
Spark快速入门指南 – Spark安装与基础使用 2016-01-15 (updated: 2016-03-07) 6309 29 Apache Spark 是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark 正如其名,最大的特点就是快(Lightning-fast),可比 Hadoop MapReduce 的处理速度快 100 倍。此外,Spark 提供了简单易用的 API,几行代码就能实现 WordCount。本教程主要参考官网快速入门教程,介绍了 Spark 的安装,Spar
以前的Spark部署都是使用的standalone方式,集群中的每台机器都安装部署Spark,然后启动Master和Worker进程运行Spark。今天尝试一下Spark on YARN的部署方式。 一、实验目的 1. 只在一台机器上安装Spark,基于已有的Hadoop集群,使用YARN调度资源。 2. 不启动Master和Worker进程提交Spark作业。 3. 通过YARN的WebUI查看Spark作业的执行情况。 二、实验环境: 4台CentOS release 6.4虚拟机,IP地址为 192.168.56.101 192.168.56.102 192.168.56.103 192.168.56.104 192.168.56.101是Hadoop集群的主,运行NameNode和ResourceManager进程。 192.168.56.102、192.168.56.103是Hadoop的从,运行DataNode和NodeManager进程。 192.168.56.104安装Pentaho的PDI,安装目录为/home/grid/data-integration。 Hadoop版本:2.7.2 Spark版本:1.5.0 PDI版本:6.0 Hadoop集群的安装配置参考 http://blog.csdn.net/wzy0623/article/details/50681554 三、安装Spark 只在192.168.56.101一台机器上上安装Spark,具体安装步骤参考 http://blog.csdn.net/wzy0623/article/details/50946766 四、配置步骤 1. 启动Hadoop集群 # 启动hdfs /home/grid/hadoop-2.7.2/sbin/start-dfs.sh # 启动yarn /home/grid/hadoop-2.7.2/sbin/start-yarn.sh 2. 将spark自带的与Hadoop集成的jar包上传到hdfs hadoop fs -put /home/grid/spark/lib/spark-assembly-1.5.0-hadoop2.6.0.jar /user/ 3. 编辑spark-defaults.conf文件,添加如下一行 spark.yarn.jar=hdfs://master:9000/user/spark-assembly-1.5.0-hadoop2.6.0.jar 修改后的spark-defaults.conf文件如图1所示
1.自从spark2.0.0发布没有assembly的包了,在jars里面,是很多小jar包
在windows 环境中搭建简单的基于hadoop 的spark 环境,进行本地化测试。
CDH集群中可以使用Hue访问Hive、Impala、HBase、Solr等,在Hue3.8版本后也提供了Notebook组件(支持R、Scala及python语言),但在CDH中Hue默认是没有启用Spark的Notebook,使用Notebook运行Spark代码则依赖Livy服务。在前面Fayson也介绍了《Livy,基于Apache Spark的开源REST服务,加入Cloudera Labs》、《如何编译Livy并在非Kerberos环境的CDH集群中安装》、《如何通过Livy的RESTful API接口向非Kerberos环境的CDH集群提交作业》、《如何在Kerberos环境的CDH集群部署Livy》、《如何通过Livy的RESTful API接口向Kerberos环境的CDH集群提交作业》、《如何打包Livy和Zeppelin的Parcel包》和《如何在CM中使用Parcel包部署Livy及验证》,本篇文章Fayson主要介绍如何在Hue中添加Notebook组件并集成Spark。
在集群中访问Kudu的方式有多种,可以通过Impala使用JDBC的方式,也可以通过Kudu提供的Client API方式,参考Fayson前面的文章《如何使用Java API访问CDH的Kudu》和《如何使用Java代码访问Kerberos环境下的Kudu》。在做Spark开发时也有访问Kudu的需求,Kudu API访问是一种方式,这里Fayson使用KuduContext实现对Kudu的读写操作。
编者按:灯塔大数据将每周持续推出《从零开始学大数据算法》的连载,本书为哈尔滨工业大学著名教授王宏志老师的扛鼎力作,以对话的形式深入浅出的从何为大数据说到大数据算法再到大数据技术的应用,带我们在大数据技术的海洋里徜徉~每周五定期更新 上期回顾&查看方式 在上一期,我们学习了多机配置的相关内容。PS:了解了上期详细内容,请在自定义菜单栏中点击“灯塔数据”—“技术连载”进行查看;或者滑到文末【往期推荐】查看。 No.70 适于迭代并行计算的平台——Spark初探 Mr. 王 :在初步了解了并行平台 Hadoop
越来越多的用户使用Spark对接HBase,对接HBase的方式有多种,通过HBase-client API实现,也有直接Spark On HBase的方式实现,比较常见的有华为的Spark-SQL-on-HBase,Hortonworks的Apache HBase Connector和Cloudera提供的SparkOnHBase,目前Cloudera的SparkOnHBase已提交的HBase的主干版本。本篇文章Fayson主要在Spark2环境下使用Cloudera的SparkOnHBase访问HBase。
在CDH集群中提交Spark作业,大家也都知道Spark的Driver和Executor之间通讯端口是随机的,Spark会随选择1024和65535(含)之间的端口,因此在集群之间不建议启用防火墙。本篇文章Fayson主要介绍如何指定Spark2作业中Driver和Executor使用指定范围内的端口进行通讯。
https://spark.apache.org/docs/3.1.2/index.html
10、服务器集群:192.168.0.110(master),192.168.0.111(slave1),192.168.0.112(slave2)
今天在intellij调试spark的时候感觉每次有新的一段代码,都要重新跑一遍,如果用spark-shell,感觉也不是特别方便,如果能像python那样,使用jupyter notebook进行编程就很方便了,同时也适合代码展示,网上查了一下,试了一下,碰到了很多坑,有些是旧的版本,还有些是版本不同导致错误,这里就记录下来安装的过程。
操作系统: centos7 64位 3台 centos7-1 192.168.190.130 master centos7-2 192.168.190.129 slave1 centos7-3 192.168.190.131 slave2
从 PrestoDB 0.275 版本开始,用户现在可以利用原生 Hudi 连接器来查询 Hudi 表。它与 Hive 连接器中的 Hudi 支持相当。要了解有关连接器使用的更多信息,请查看 prestodb 文档[1]。
在前面的文章《CDH5.13和CM5.13的新功能》中Fayson介绍过Cloudera发布CDH5.13时,同时也发布了Kafka3.0版本(即社区0.11版),目前社区最新版本为1.0。由于Kafka3.0和Spark2.2需要JDK8的支持,所以在升级Kafka3.0和Spark2.2版本时必须先升级JDK版本,可以参考《如何将CDH集群JAVA升级至JDK8》和《如何将Kerberos环境下CDH集群JAVA升级至JDK8》,本文Fayson主要介绍在CDH集群中如何升级Kakfa3.0和Spark2.2。
在CDSW中启动一个Session然后运行代码,第一次能够正常运行,在第一次运行完成后不关闭Session,在同一个Session中再次运行代码,此时就会出现报错,主要的报错信息为“Delegation Token can be issued only with kerberos or web authentication”,报错的截图如下:
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- 在前面的文章Fayson介绍了《如何在CDH中启用Spark Thrift》和《如何在Kerberos环境下的CDH集群部署Spark1.6 Thrift及spark-sql客户端》,本篇文章Fayson主要介绍如何在非Kerberos环境下的CDH集群中部署Spark2.1的T
0、前言 3月31日是 Spark 五周年纪念日,从第一个公开发布的版本开始,Spark走过了不平凡的5年:从刚开始的默默无闻,到13年的鹊起,14年的大爆发。Spark核心之上有分布式的机器学习,SQL,streaming和图计算库。 4月1日 spark 官方正式宣布 Spark 2.0 对Spark重构,更好支持手机等移动终端。Databricks创始人之一hashjoin透漏了相关的重构方法:利用Scala.js项目把Spark代码编译成JavaScript,然后利用Safari / Chrom
在Spark2代码中使用hbase-spark依赖包访问HBase时,编写的代码无法完成编译,在编译的过程中提示如下错误:
Hive Metastore作为元数据管理中心,支持多种计算引擎的读取操作,例如Flink、Presto、Spark等。本文讲述通过spark SQL配置连接Hive Metastore,并以3.1.2版本为例。
http://spark.apache.org/docs/latest/index.html
近日,在Spark开源十周年之际,Spark3.0发布了,这个版本大家也是期盼已久。登录Spark官网,最新的版本已经是3.0。而且不出意外,对于Structured Streaming进行了再一次的加强,这样Spark和Flink在实时计算领域的竞争,恐怕会愈演愈烈。
Kubernetes 作为一个广受欢迎的开源容器协调系统,是Google于2014年酝酿的项目。从Google趋势上看到,Kubernetes自2014年以来热度一路飙升,短短几年时间就已超越了大数据分析领域的长老Hadoop。本公众号之前的文章(Kubernetes核心组件解析)也对Kubernetes的几个组件做了一些详细的剖析,本文就带领大家一起看看Kubernetes和Spark碰到一起会擦出什么样的火花。
背景是这样的:手上有一个学长之前实现的Spark项目,使用到了GraphX,并且用的Scala编写,现在需要再次运行这个项目,但如果直接在IDEA中打开项目,则由于各种错误会导致运行失败,这里就记录一下该如何使用IDEA来加载老旧的Spark项目。 注意:默认你的机器已有Scala环境,项目使用IDEA打开,对Sbt不做要求,因为这里采用的是NoSbt方式添加依赖的。
问题导读 1.你认为为何出现SparkSession? 2.SparkSession如何创建RDD? 3.SparkSession通过那个类来实例化? 4.bulider包含哪些函数? 为何出现SparkSession 对于spark1.x的版本,我们最常用的是rdd,如果我们想使用DataFrame,则需要通过rdd转换。随着dataframe和dataset使用的越来越多,所以spark就寻找了新的切入点--SparkSession。如果rdd使用SparkContext,DateFrame和Dat
大部分用户在使用CDH集群做Spark开发的时候,由于开发环境的JDK版本比CDH集群默认使用的JDK1.7.0_67-cloudera版本新,可能会出现Spark代码依赖的Java API不兼容问题,解决这个问题方法有两个:一是升级CDH集群的JDK版本;二是指定Spark运行环境JDK版本。本文章主要讲述如何通过Cloudera Manager来指定Spark1和Spark2的运行环境(包含JDK环境、Spark Local Dir等的配置)。
Jupyter Notebook是一个Web应用程序,允许你创建和分享,包含实时的代码,可视化和解释性文字。常用于数据的清洗和转换、数值模拟、统计建模、机器学习和更多,支持40多种语言。python ,R,go,scala等。Jupyter Notebook是Python中的一个包,在Fayson前面的文章《如何在CDH集群上部署Python3运行环境及运行Python作业》介绍了在集群中部署Anaconda,该Python环境自带了Jupyter的包。本篇文章Fayson主要介绍如何在非安全的CDH集群中部署Jupyter Notebook并与Spark2集成。
在CDH集群启用了Kerberos后,在执行Spark作业时难免会遇到由于Kerberos认证问题导致作业运行失败的时候,那我们需要针对Spark作业进行调试,通过一些Debug日志查看认证失败的原因。本篇文章Fayson主要介绍如何为Spark的Driver和Executor的JVM启用Kerberos的Debug日志。
本文为CSDN原创编译文章,禁止转载。 【编者按】在"Spark 1.4:SparkR发布,钨丝计划锋芒初露"一文中,我们有简单地介绍了1.4版本给Spark注入的新特性,在各个组件的介绍中也提到了新UI给用户带来的便捷。而从本文开始,我们将通过Databricks Blog上的系列文章深入了解新版本中的数据可视化,首先分享的是这个系列的第一篇博文——Understanding your Spark application through visualization,作者Andrew Or。 以下为译文 图
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- 在前面的文章Fayson介绍了一些关于SparkStreaming的示例《如何使用Spark Streaming读取HBase的数据并写入到HDFS》、《SparkStreaming读Kafka数据写HBase》和《SparkStreaming读Kafka数据写Kudu》以上文章
Windows 32或64位下载安装配置Spark: 1)下载地址:http://spark.apache.org/downloads.html 马克-to-win @ 马克java社区:选择需要下载的Spark版本,我选的是当前最新的版本2.2.0。因为我已经安装了Hadoop 2.7.4版本的,所以我选择对应的Pre-built for Hadoop 2.7 and later。注意网站上说scala要求2.11版本以上。(在我的新机器上,是没有预先装scala的,先装的spark, 证明这么装的顺序是可行的)
1.文档编写目的 Apache Hudi是一个Data Lakes的开源方案,是Hadoop Updates and Incrementals的简写,它是由Uber开发并开源的Data Lakes解决方案。Hudi 是一个丰富的平台,用于构建具有增量数据管道的流式数据湖,具有如下基本特性/能力: Hudi能够摄入(Ingest)和管理(Manage)基于HDFS之上的大型分析数据集,主要目的是高效的减少入库延时。 Hudi基于Spark来对HDFS上的数据进行更新、插入、删除等。 Hudi在HDFS数据集上
领取专属 10元无门槛券
手把手带您无忧上云