首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

问与答62: 如何按指定个数在Excel中获得一列数据的所有可能组合?

excelperfect Q:数据放置在列A中,我要得到这些数据中任意3个数据的所有可能组合。如下图1所示,列A中存放了5个数据,要得到这5个数据中任意3个数据的所有可能组合,如列B中所示。...Dim n AsLong Dim vElements As Variant Dim lRow As Long Dim vResult As Variant '要组合的数据在当前工作表的列...A Set rng =Range("A1", Range("A1").End(xlDown)) '设置每个组合需要的数据个数 n = 3 '在数组中存储要组合的数据...Then lRow = lRow + 1 Range("B" & lRow) = Join(vResult, ", ") '每组组合放置在多列中...代码的图片版如下: ? 如果将代码中注释掉的代码恢复,也就是将组合结果放置在多列中,运行后的结果如下图2所示。 ? 图2

5.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    arcengine+c# 修改存储在文件地理数据库中的ITable类型的表格中的某一列数据,逐行修改。更新属性表、修改属性表某列的值。

    作为一只菜鸟,研究了一个上午+一个下午,才把属性表的更新修改搞了出来,记录一下: 我的需求是: 已经在文件地理数据库中存放了一个ITable类型的表(不是要素类FeatureClass),注意不是要素类...FeatureClass的属性表,而是单独的一个ITable类型的表格,现在要读取其中的某一列,并统一修改这一列的值。...表在ArcCatalog中打开目录如下图所示: ? ?...false); int fieldindex = pTable.FindField("JC_AD");//根据列名参数找到要修改的列 IRow row =...网上有的代码是用的ID来索引,但是表格的ID可能并不是从0开始,也不一定是按照顺序依次增加。

    9.6K30

    统计师的Python日记【第4天:欢迎光临Pandas】

    基本操作 (1)改变索引名 (2)增加一列 (3)排序 (4)删除一列 ---- 统计师的Python日记【第4天:欢迎光临Pandas】 前言 第3天我发了一个愿,学Python我的计划是: Numpy...我不是一名程序员,不写网站(以后可能会爬一爬网站的数据)、不搞支付系统、不处理多媒体、也不想当黑客,学Python主要目的就是玩数据、做分析,c成为一名进阶的统计师,以后可能的话搞一搞大数据。 ?...上面是在ipython notebook中(一个嵌入在浏览器中的shell!)显示的,如果在Python自带的shell中,显示出来是这样的: ? 也不差啊! 那么怎么才能生成这样一张表呢?...有时候增加的这一列不一定全,可能有缺失,比如再给每个城市增加一列归属省份,但是本人地理差,只知道广州属于广东,苏州属于江苏,那么我可以这么加: ? 这里我get了两点: 1....在上例中,我们多了一个索引为“Chu”的空数据,并且在Bao的前面,我们再用sort_index()让它按照字母顺序自动重排一下。 ?

    1K90

    《Python for Excel》读书笔记连载12:使用pandas进行数据分析之理解数据

    处理空单元格的方式一致,因此在包含空单元格的区域内使用Excel的AVERAGE公式将获得与应用于具有相同数字和NaN值(而不是空单元格)的系列的mean方法相同的结果。...,而不是mean,如果想使用自己的函数,使用agg方法。...最后,margins与Excel中的总计(GrandTotal)相对应,即如果不使用margins和margins_name方式,则Total列和行将不会显示: 总之,数据透视意味着获取列(在本例中为...Region)的唯一值,并将其转换为透视表的列标题,从而聚合来自另一列的值。...这使得跨感兴趣的维度读取摘要信息变得容易。在我们的数据透视表中,会立即看到,在北部地区没有苹果销售,而在南部地区,大部分收入来自橙子。如果要反过来将列标题转换为单个列的值,使用melt。

    4.3K30

    最全面的Pandas的教程!没有之一!

    我喜欢 Pandas 的原因之一,是因为它很酷,它能很好地处理来自一大堆各种不同来源的数据,比如 Excel 表格、CSV 文件、SQL 数据库,甚至还能处理存储在网页上的数据。...构建一个 DataFrame 对象的基本语法如下: 举个例子,我们可以创建一个 5 行 4 列的 DataFrame,并填上随机数据: 看,上面表中的每一列基本上就是一个 Series ,它们都用了同一个...获取 DataFrame 中的列 要获取一列的数据,还是用中括号 [] 的方式,跟 Series 类似。比如尝试获取上面这个表中的 name 列数据: ?...image 连接(Join) 如果你要把两个表连在一起,然而它们之间没有太多共同的列,那么你可以试试 .join() 方法。和 .merge() 不同,连接采用索引作为公共的键,而不是某一列。 ?...比如,我们先定义一个 square() 函数,然后对表中的 col1 列应用这个函数: ? 在上面这个例子中,这个函数被应用到这一列里的每一个元素上。同样,我们也可以调用任意的内置函数。

    26K64

    【CVPR Oral】TensorFlow实现StarGAN代码全部开源,1天训练完

    在引入生成对抗网络(GAN)之后,这项任务有了显着的改进,包括可以改变头发颜色,改变风景图像的季节等等。 给定来自两个不同领域的训练数据,这些模型将学习如何将图像从一个域转换到另一个域。...图 1:通过从 RaFD 数据集学习迁移知识,应用到 CelebA 的多域图像到图像转换结果。第一列和第六列显示输入图像,其余列是产生的 StarGAN 图像。...注意,图像是由一个单一模型网络生成的,面部表情标签如生气、高兴、恐惧是从 RaFD 学习的,而不是来自 CelebA。...在图 1 中,前 5 列显示了一个 CelebA 的图像是如何根据 4 个域(“金发”、“性别”、“年龄” 和 “白皮肤”)进行转换。...我们可以进一步扩展到训练来自不同数据集的多个域,例如联合训练 CelebA 和 RaFD 图像,使用在 RaFD 上训练的特征来改变 CelebA 图像的面部表情,如图 1 最右边的列所示。

    1.4K40

    14个pandas神操作,手把手教你写代码

    01 Pandas是什么 很多初学者可能有这样一个疑问:“我想学的是Python数据分析,为什么经常会被引导到Pandas上去?”虽然这两个东西都是以P开头的,但它们并不是同一个层面的东西。...作为Python的三方库,Pandas是建构在Python的基础上的,它封装了一些复杂的代码实现过程,我们只要调用它的方法就能轻松实现我们的需求。...Python中的库、框架、包意义基本相同,都是别人造好的轮子,我们可以直接使用,以减少重复的逻辑代码。正是由于有众多覆盖各个领域的框架,我们使用起Python来才能简单高效,而不用关注技术实现细节。...Pandas的命名跟熊猫无关,而是来自计量经济学中的术语“面板数据”(Panel data)。面板数据是一种数据集的结构类型,具有横截面和时间序列两个维度。...:10:2] # 在前10个中每两个取一个 df.iloc[:10,:] # 前10个 (3)指定行和列 同时给定行和列的显示范围: df.loc['Ben', 'Q1':'Q4'] # 只看Ben

    3.4K20

    〔连载〕VFP9增强报表-数据分组与环境还有国际化

    译者:Fbilo 数据分组的增强 在 VFP 9 中,数据分组有三个增强。 第一个增强,是当报表中有多个自左向右而不是自顶向下打印的字段时,VFP 把组标头放在哪里。...图12展示了在以前版本中,报表引擎把组标头放在细节带区的行里;它(指组标头)占据了第一列,而细节带区的内容只好从第二列开始。...第一列被保留给组标头带区,即使你把这个带区的高度设置为0也一样,而且这么做的话,第一列就会是空白的。...这个选项只对字符型字段可用,有 Overlay (覆盖)和 Interleave(插入)两个选择。不过,这其实并不是一个新功能,只是用来决定是否要把“@R”添加到输出的内容上。...表达式生成器对话框不再显示来自数据环境中的表,而只显示当前打开了的游标。这让你可以更全面的控制用户可以在这个对话框中选择的字段。

    1.4K20

    直观地解释和可视化每个复杂的DataFrame操作

    初始DataFrame中将成为索引的列,并且这些列显示为唯一值,而这两列的组合将显示为值。这意味着Pivot无法处理重复的值。 ? 旋转名为df 的DataFrame的代码 如下: ?...我们选择一个ID,一个维度和一个包含值的列/列。包含值的列将转换为两列:一列用于变量(值列的名称),另一列用于值(变量中包含的数字)。 ?...Explode Explode是一种摆脱数据列表的有用方法。当一列爆炸时,其中的所有列表将作为新行列在同一索引下(为防止发生这种情况, 此后只需调用 .reset_index()即可)。...请注意,concat是pandas函数,而不是DataFrame之一。因此,它接受要连接的DataFrame列表。 如果一个DataFrame的另一列未包含,默认情况下将包含该列,缺失值列为NaN。...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。

    13.3K20

    官方推荐:6种Pandas读取Excel的方法,正确答案都写在源代码里了~太方便了

    不仅是我们Python开发,很多其它行业的朋友也经常使用Python中的Pandas这个库进行Excel的数据处理。 数据处理从宏观上分为这么3个阶段:数据读取、数据处理、数据输出。...我们都用1行命令来自动搞定,毕竟我们是自动化办公社区,如果这些操作不能自动化搞定,那岂不是太过分了?...1、指定索引列读取 这种读取方式,适合Excel里的数据,本身有一列表示序号的情况。...结果如下图所示: 我们添加了一列:年龄,本来是整数,但是指定float类型之后,读取出来成了小书。 这种读取,更适合对数据有特殊要求的情况。...结果如下图所示: 我们的表格里,有个人的名字叫:庞强我们不想显示这个人的名字 于是我们就在na_values指定:name这一列是庞强的名字,置为空,在pandas里空值会用NaN表示。

    4.4K10

    Python与PHP的对决:谁是工程师最喜欢和最讨厌的语言?

    左边的「Skills」一栏表示雇主最需要的语言技能,根据 2018 年每位求职者的平均面试邀请排名得出。中间五列表示这些语言在各个地区的排名。最后一列表示以各编程语言作为开发者主要语言的百分比。...报告还显示,R 语言已经垫底(在 IEEE 的年度排名中 R 语言也是极速下降)。 开发者「最喜欢」Python,最讨厌「PHP」 ?...需求量大、薪资高是不是就意味着工程师们会一拥而上呢?答案好像是否定的。报告显示,在回答「你最想要学习什么技术或技能」这一问题时,只有 12% 的人将区块链作为首选。而更多的人(61%)选择了机器学习。...下图中的调查数据显示,近半数(48%)的软件工程师认为结对编程(一种开发方式,两名程序员在一个工作站上工作)的工作方式能够提高自己在一家公司工作的意愿。...他们一起在谷歌工作,在一台电脑上写代码,就像「一个大脑的两个部分」。(参见:Jeff Dean 的激荡人生:我和 Sanjay 在同一台电脑上写代码) ?

    48030

    ​官方推荐:6种Pandas读取Excel的方法,正确答案都写在源代码里了~太方便了

    很多朋友使用Python中的Pandas这个库进行Excel的数据处理,数据处理从宏观上分为这么3个阶段:数据读取、数据处理、数据输出。对于大多数新人来说,在数据读取的这一步就卡住了。...我们都用1行命令来自动搞定,毕竟我们是自动化办公社区,如果这些操作不能自动化搞定,那岂不是太过分了?...3、6种读取Excel的方式下面我们就根据上文获取到的pandas源码,逐个解析一下这6种读取excel的方式。1、指定索引列读取这种读取方式,适合Excel里的数据,本身有一列表示序号的情况。...结果如下图所示:列名没有对齐,不是代码运行有问题,是因为那么列被当作了索引列。图片这种方式不符合我们这个文件的要求,所以我们可以进行以下修改:不要指定索引列。...:我们的表格里,有个人的名字叫:庞强我们不想显示这个人的名字于是我们就在na_values指定:name这一列是庞强的名字,置为空,在pandas里空值会用NaN表示。

    1.5K30

    Python面试题之Python中type和object的关系

    知乎上看到的提问: 两个是互为实例的关系,但不是互为子类的关系,只有type是object的子类,反之则不成立。...在Python的世界中,object是父子关系的顶端,所有的数据类型的父类都是它;type是类型实例关系的顶端,所有对象都是它的实例的。...白板上的虚线表示源是目标的实例,实线表示源是目标的子类。即,左边的是右边的类型,而上面的是下面的父亲。 虚线是跨列产生关系,而实线只能在一列内产生关系。除了type和object两者外。...白板上的第三列,它们是第二列类型的实例,而没有父类(__bases__)的,我们把它们叫Instance。 你以为事情就这样完了?不。。看见type孤零零在第一列其实不是那么舒服。。...回答一下题主在问题后面说的为什么要有两个,而不是一个。如果type和object只保留一个,那么一定是object。

    1K10

    整理了 25 个 Pandas 实用技巧,拿走不谢!

    该Series的nlargest()函数能够轻松地计算出Series中前3个最大值: ? 事实上我们在该Series中需要的是索引: ?...将一个由列表组成的Series扩展成DataFrame 让我们创建一个新的示例DataFrame: ? 这里有两列,第二列包含了Python中的由整数元素组成的列表。...你可以看到,每个订单的总价格在每一行中显示出来了。 这样我们就能方便地甲酸每个订单的价格占该订单的总价格的百分比: ? 20. 选取行和列的切片 让我们看一眼另一个数据集: ?...set_option()函数中第一个参数为选项的名称,第二个参数为Python格式化字符。可以看到,Age列和Fare列现在已经保留小数点后两位。...注意,这并没有修改基础的数据类型,而只是修改了数据的显示结果。 你也可以重置任何一个选项为其默认值: ? 对于其它的选项也是类似的使用方法。 25.

    3.2K10

    R语言vs Python:数据分析哪家强?

    本文章旨在更客观地看待这两门语言。我们会平行使用Python和R分析一个数据集,展示两种语言在实现相同结果时需要使用什么样的代码。这让我们了解每种语言的优缺点,而不是猜想。...在两种方法中,我们均在dataframe的列上应用了一个函数。在python中,如果我们在非数值列(例如球员姓名)上应用函数,会返回一个错误。要避免这种情况,我们只有在取平均值之前选择数值列。...在R中,我们在每一列上应用一个函数,如果该列包含任何缺失值或不是数值,则删除它。接下来我们使用cluster包实施k-means聚类,在数据中发现5个簇。...在R中,RCurl提供稍微复杂方法发起请求。两者都把网页下载为字符串类型的数据。注:这在R中的下一步并不是必须,只是为了比较的原因。...我们使用rvest,一个广泛使用的新R网络抓取包实现抽取数据,注意这里可以直接传递url给rvest,因此上一步在R中并不是必须的。

    3.5K110

    PQ获取TABLE的单一值作为条件查询MySQL返回数据

    下午,我正爽歪歪地喝着咖啡,看着Power BI每秒钟刷新一次,静静等待某个分公司完成本月绩效任务,自动调用Python在钉钉群中发送喜报: 紧接着再次调用Python将Power BI云端报告中的各分公司最新完成率数据和柱状图截图发在群里...为简化模型,我们采用下面的数据来讲解: 比如我们要查询的人是moon,那么首先在powerquery编辑器中右键moon然后深化: 这样就得到了显示的值:moon。...注意这里的值是一个单纯的值,而不是一个一行一列的表。...而我们的原始表中,moon处于第2行: 而经过排序后的数据,第二行变成了infi: 因此,返回的查询一定也是infi的。...在UI上并没有设置的位置,但是我们还是可以想其他办法的,有这么几种方式: 1.从带有主键的数据库中导入数据 2.在pq中对table某一列去重,那么这一列就可以作为主键 3.使用Table.AddKey

    3.5K51
    领券