pandas库是Python数据分析的核心库 它不仅可以加载和转换数据,还可以做更多的事情:它还可以可视化 pandas绘图API简单易用,是pandas流行的重要原因之一 Pandas 单变量可视化...单变量可视化, 包括条形图、折线图、直方图、饼图等 数据使用葡萄酒评论数据集,来自葡萄酒爱好者杂志,包含10个字段,150929行,每一行代表一款葡萄酒 加载数据 条形图是最简单最常用的可视化图表 在下面的案例中...,将所有的葡萄酒品牌按照产区分类,看看哪个产区的葡萄酒品种多: 先将plot需要的参数打包成一个字典,然后在使用**解包(防止传进去的成为一个参数) 上面的图表说明加利福尼亚生产的葡萄酒比其他省都多... 直方图看起来很像条形图, 直方图是一种特殊的条形图,它可以将数据分成均匀的间隔,并用条形图显示每个间隔中有多少行, 直方图柱子的宽度代表了分组的间距,柱状图柱子宽度没有意义 直方图缺点:将数据分成均匀的间隔区间...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒 从结果中看出,最受欢迎的葡萄酒是
数据导入与预处理-拓展-pandas可视化 1. 折线图 1.1 导入数据 1.2 绘制单列折线图 1.3 绘制多列折线图 1.4 绘制折线图-双y轴 2....条形图 2.1 单行垂直/水平条形图 2.2 多行条形图 3. 直方图 3.1 生成数据 3.2 透明度/刻度/堆叠直方图 3.3 拆分子图 4....b", "c", "d"]) df2 输出为: # kind = 'bar'表示垂直,若kind = 'barh'表示为水平 # 重新生成数据,并对使用条形图可视化 df2 的第 3 行 df2....iloc[2].plot(kind = 'bar', figsize=(10, 6)) plt.show() 输出为: 2.2 多行条形图 多行堆叠 # 多行,堆叠对应着着stacked=True...总结 关于pandas的可视化的用法还有很多,这里不再拓展,但还是建议使用matplotlib,seaborn等库完成绘图。
,重组之后索引数量可能发生变化,索引名为传入标签序列 rename执行的是索引重命名操作,接收一个字典映射或一个变换函数,也均适用于行列索引,重命名之后索引数量不发生改变,索引名可能发生变化 另外二者执行功能和接收参数的套路也是很为相近的...rename用法套路与reindex很为相近,但执行功能完全不同,主要用于执行索引重命名操作,接收一个字典或一个重命名规则的函数类型,示例如下: ?...),可接收字典或函数完成单列数据的变换;apply既可用于一列(即Series)也可用于多列(即DataFrame),但仅可接收函数作为参数,当作用于Series时对每个元素进行变换,作用于DataFrame...也就是说,三者的最大不同在于作用范围以及变换方式的不同。 实际上,apply和map还有一个细微区别在于:同样是可作用于单列对象,apply适用于索引这种特殊的单列,而map则不适用。...05 stack与unstack 这也是一对互逆的操作,其中stack原义表示堆叠,实现将所有列标签堆叠到行索引中;unstack即解堆,用于将复合行索引中的一个维度索引平铺到列标签中。
Pandas 的 plot() 方法 Pandas 附带了一些绘图功能,底层都是基于 Matplotlib 库的,也就是说,由 Pandas 库创建的任何绘图都是 Matplotlib 对象。...默认情况下显示图例的图例,但是我们可以将 legend 参数设置为 false 来隐藏图例。 条形图 条形图是一种基本的可视化图表,用于比较数据组之间的值并用矩形条表示分类数据。...该图表可能包括特定类别的计数或任何定义的值,并且条形的长度对应于它们所代表的值。 在下面的示例中,我们将根据每月平均股价创建一个条形图,来比较每个公司在特定月份与其他公司的平均股价。...: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据,这些条形图代表不同的组,结果条的高度显示了组的组合结果...,通过将 False 分配给堆叠参数来取消堆叠面积图是一项常见任务: df.plot(kind='area', stacked=False, figsize=(9,6)) Output: 饼图 如果我们对比率感兴趣
这篇文章我们进行pandas可视化化的操作, 在这里我只是简单画几个图,表面pandas也是可以用来画图的,后期会在更新matlab等数据可视化的python库的。...二、条形图 利用plot.bar() # 条形图 df.plot.bar() ?...堆叠的条形图: 设置stacked=True就OK啦 # 堆叠条形图 df.plot.bar(stacked=True) ?...每列绘制不同的直方图: import pandas as pd import numpy as np df=pd.DataFrame({'a':np.random.randn(1000)+1,'b':...以上就是利用pandas来进行可视化的一些函数,感觉图很丑, 不是很推荐使用的哈~_~
今天简单介绍一下Pandas可视化图表的一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便的将Series和Dataframe类型数据直接进行数据可视化。 1....# 绘图引擎 import pandas_bokeh pandas_bokeh.output_notebook() df.plot.bar(backend='pandas_bokeh') # 绘图引擎...) 柱状图多子图 # 柱状图多子图 df.plot.bar(subplots=True, rot=0) 条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...# 默认是堆叠 df.plot.area() 单个面积图 df.a.plot.area() 取消堆叠 # 取消堆叠 df.plot.area(stacked=False) 散点图 散点图就是将数据点展示在直角坐标系上
今天简单介绍一下Pandas可视化图表的一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便的将Series和Dataframe类型数据直接进行数据可视化。 1....条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh(figsize=(6,8)) ?...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。...默认情况下,面积图是堆叠的 # 默认是堆叠 df.plot.area() ? 单个面积图 df.a.plot.area() ?...取消堆叠 # 取消堆叠 df.plot.area(stacked=False) ?
这些条的高度或长度与它们所代表的值成正比。条形可以是垂直的或水平的。垂直条形图有时也称为柱形图。 以下是按年指示加拿大人口的条形图。 条形图适合应用到分类数据对比,横置时也称条形图。...堆叠条形图用于显示数据集子组。...这是堆叠条形图的类型,其中每个堆叠条形显示其离散值占总值的百分比。...它用于处理来自较大数据集的不同数据组。它的每个折线图都向下阴影到 x 轴。它让每一组彼此堆叠。...复合折线图也可以称作堆叠面积图,堆叠面积图和基本面积图一样,唯一的区别就是图上每一个数据集的起点不同,起点是基于前一个数据集的,用于显示每个数值所占大小随时间或类别变化的趋势线,展示的是部分与整体的关系
比较(七)利用python绘制表格 表格(Table)简介 表格是数据在行和列中的结构化排列,允许进行方便的排序、过滤和分析。表格的优点在于可以清晰、有组织的呈现信息,便于快速比较和解读信息。...快速绘制 基于pandas 可能需要更新jinja2:pip install --upgrade jinja2 import pandas as pd import matplotlib as mpl...0, 0.5, len(df))) n_rows = len(df) index = np.arange(len(df.columns)-1) + 0.3 bar_width = 0.6 # 条形堆叠图的垂直便宜...y_offset = np.zeros(len(df.columns)-1) # 绘制条形图并为表格创建文本标签列表 cell_text = [] for row in range(n_rows):...的styler方法绘制独具风格的表格,这里推荐使用plottable快速绘制表格,并通过相关方法和参数自定义多样化的表格。
7.贝叶斯定理: 贝叶斯定理是条件概率的一种重要应用,它描述了根据某些证据或观察更新对某事件的概率估计的过程。...定积分:定积分表示曲线下方的面积或函数在某区间上的平均值。 基本形式: 表示函数 f(x) 在区间 [a, b] 上的定积分。...: # 水平堆叠 hstacked = np.hstack((arr2, arr2)) print(hstacked) # 输出 [[1 2 3 1 2 3] [4 5 6 4 5 6]] # 垂直堆叠...安装 Seaborn pip install seaborn 导入 Seaborn import seaborn as sns 基本绘图 下面是一个使用 Seaborn 绘制简单条形图的例子。...(访问国外网站) 使用代理:如果你在公司或学校网络中,可能需要配置代理。
这将为使用 SQL 或其他关系数据库的用户提供熟悉的操作,因为它实现了数据库join操作。 pandas.concat 沿轴连接或“堆叠”对象。...表 8.3:pandas.concat函数参数 参数 描述 objs 要连接的 pandas 对象的列表或字典;这是唯一必需的参数 axis 要沿着连接的轴;默认为沿着行连接(axis="index")...我们通过传递stacked=True从 DataFrame 创建堆叠条形图,导致每行中的值水平堆叠在一起(参见 DataFrame 堆叠条形图): In [75]: df.plot.barh(stacked...=True, alpha=0.5) 图 9.17:DataFrame 堆叠条形图 注意 一个有用的条形图的制作方法是使用value_counts来可视化 Series 的值频率:s.value_counts...让我们看一个关于餐厅小费的示例数据集。假设我们想要制作一个堆叠条形图,显示每天每个派对规模的数据点的百分比。我使用read_csv加载数据,并通过日期和派对规模进行交叉制表。
环境准备 我们用到的是pandas-bokeh,它为Pandas、GeoPandas和Pyspark 的DataFrames提供了Bokeh绘图后端,类似于Pandas已经存在的可视化功能。...') 目前这个绘图方式支持的可视化图表有以下几类: 折线图 柱状图(条形图) 散点图 点图 阶梯图 饼图 直方图 面积图 地图 1....: kind : 图表类型,目前支持的有:“line”、“point”、“scatter”、“bar”和“histogram”;在不久的将来,更多的将被实现为水平条形图、箱形图、饼图等 x:x的值,如果未指定...柱状图(条形图) 柱状图没有特殊的关键字参数,一般分为柱状图和堆叠柱状图,默认是柱状图。...alpha=0.6) 默认情况下,x轴的值就是数据索引列的值,我们也可通过指定参数x来设置x轴;另外,我们还可以通过关键字kind="barh"或访问器plot_bokeh.barh来进行条形图绘制
我喜欢 Pandas 的原因之一,是因为它很酷,它能很好地处理来自一大堆各种不同来源的数据,比如 Excel 表格、CSV 文件、SQL 数据库,甚至还能处理存储在网页上的数据。...如上图的 out[24] 中所示,如果你从一个 Python 字典对象创建 Series,Pandas 会自动把字典的键值设置成 Series 的 index,并将对应的 values 放在和索引对应的...我喜欢 Pandas 的原因之一,是因为它很酷,它能很好地处理来自一大堆各种不同来源的数据,比如 Excel 表格、CSV 文件、SQL 数据库,甚至还能处理存储在网页上的数据。...因为我们没有指定堆叠的方向,Pandas 默认按行的方向堆叠,把每个表的索引按顺序叠加。 如果你想要按列的方向堆叠,那你需要传入 axis=1 参数: ? 注意,这里出现了一大堆空值。...因为我们用来堆叠的3个 DataFrame 里,有许多索引是没有对应数据的。因此,当你使用 pd.concat() 的时候,一定要注意堆叠方向的坐标轴(行或列)含有所需的所有数据。
pandas也提供了一个方便的.value_counts() 方法,用来计算一个非空值的直方图,并将之转变成一个pandas的series结构:df.年龄.value_counts() Seaborn模块...Python实现histogram方法 #生成直方图 # count_elements() 返回了一个字典,字典里的键值对:所有数值出现的频率次数。...15)、label:设置直方图的标签,可通过legend展示图例。 16)、stacked:当有多个数据时,是否需要将直方图呈堆叠摆放,默认水平摆放。...7)、hist_kws:以字典形式传递直方图的其他修饰属性,如填充色、边框色、宽度等。 8)、kde_kws:以字典形式传递核密度图的其他修饰属性,如线的颜色、线的类型等。...9)、rug_kws:以字典形式传递须图的其他修饰属性,如线的颜色、线的宽度等。 10)、fit_kws:以字典形式传递须图的其他修饰属性,如线的颜色、线的宽度等。
python的几个绘图库:pandas、Seaborn、matplotlib 1.单变量画图 pandas 中的.plot方法可以直接画图。...查了一下series:表格数据的每一行或每一列的数据结构都是series,可以将它看成一维的表格数据。可以属于DataFrame的一部分也可以作为一个单独的数据结构存在。...因为pandas的.plot方法时以matplotlib为基础的,所以每次画图之前要先import matplotlib.pyplot as plt,画图之后又需要show()展示图片。...tips,来自seaborn包,内容如下: import seaborn as sns tips = sns.load_dataset('tips') tips.head() ## total_bill...两变量的图不是在单列上调用.plot方法,而是在整个数据框上调用。
ggplot2的语法讲解 ---- 如果读者对R语言比较熟悉,一定听过或使用过ggplot2的绘图体系了。...(如轴信息、边框色、填充色等),但要求属性值来自于原始的绘图数据data; data:指定绘图所需的原始数据,如果使用默认的NULL值,则图形数据将来自于ggplot函数;如果指定一个明确的数据框,则该数据框将覆盖...如果绘图数据涉及的是双离散变量单数值变量或者双数值变量单离散变量时,也可以借助于geom_bar函数绘制堆叠条形图、百分比堆叠条形图、交错条形图和对比条形图。...然而,在实际的企业环境中,这样的图形出现的频次并不是很高,因为绝对数量的堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍的百分比堆叠条形图。...所以,比例问题或差异问题才是企业更关注的数据点。
导读 前几天发表了一篇推文,分享了Pandas中非常好用的一个API——explode,然而今天又发生了戏剧性的一幕:因Pandas版本过低系统提示'Series' object has no attribute...基于这一思路,可将问题拆解为两个子问题: 含有列表元素的单列分为多列 多列转成多行 而这两个子问题在pandas丰富的API中其实都是比较简单的,例如单列分为多列,那么其实就是可直接用pd.Series...至此,实际上是完成了单列向多列的转换,其中由于每列包含元素个数不同,展开后的长度也不尽一致,pandas会保留最长的长度,并将其余填充为空值(正因为空值的存在,所以原本的整数类型自动变更为小数类型)。...stack原义为堆栈的意思,放到pandas中就是将元素堆叠起来——从宽表向长表转换。...ok,那么可以预见的是在刚才获得的多列DataFrame基础上执行stack,将实现列转行堆叠的效果并得到一个Series。具体来说,结果如下: ?
由于Pandas中提供了两种核心的数据结构:DataFrame和Series,其中DataFrame的任意一行和任意一列都是一个Series,所以某种意义上讲DataFrame可以看做是Series的容器或集合...中的一个特殊字典,其中每个列名是key,每一列的数据为value(注:这个特殊的字典允许列名重复),该种形式对列名无任何要求。...在Spark中,提取特定列也支持多种实现,但与Pandas中明显不同的是,在Spark中无论是提取单列还是提取单列衍生另外一列,大多还是用于得到一个DataFrame,而不仅仅是得到该列的Column类型...03 小结 本文分别列举了Pandas和Spark.sql中DataFrame数据结构提取特定列的多种实现,其中Pandas中DataFrame提取一列既可用于得到单列的Series对象,也可用于得到一个只有单列的...DataFrame子集,常用的方法有4种;而Spark中提取特定一列,虽然也可得到单列的Column对象,但更多的还是应用select或selectExpr将1个或多个Column对象封装成一个DataFrame
为了实现宽表变窄表,用到pandas里的melt方法。...在我们的效果展示中,可以看到 类型是条形图,数值高低排序,每个条形图颜色不一样,我们来一步一步看看如何做出最终效果~ 4.1.朴实无华的条形图 barh是条形图,就是横着的柱状图,以下我们先取2019年的年度数据展示前...我们看到上面这张图平平无奇,朴实无华的配色,没有多一分的元素(标题、数据标签等等),接下来我们先把条形图美化一下 4.2.有点还行的条形图 通过自定义条形图配色,再附上一些text说明。...讲的太对了,字体还丑、颜色搭配也是难看,当然这些都是可以自己配置的 因为后续 我们会换个plt.xkcd()**「手绘卡通风格」**的形式,但是卡通风格的形式需要特别处理中文字体显示问题,这里先介绍下来自好朋友...pandas其实有现成的方式,这里也不展开说明了) ❞ -END-
整理 | 晓查 来自 | 量子位 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。...导入数据 在绘制图形前,我们首先需要导入csv文件: import pandas as pd df=pd.read_csv(‘....此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?
领取专属 10元无门槛券
手把手带您无忧上云